• Photonics Research
  • Vol. 8, Issue 12, 1910 (2020)
Jintian Lin1, Fang Bo2、5、*, Ya Cheng1、3、4、6、*, and Jingjun Xu2、7、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
  • 2The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
  • 3XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • 4Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 5e-mail: bofang@nankai.edu.cn
  • 6e-mail: ycheng@phys.ecnu.edu.cn
  • 7e-mail: jjxu@nankai.edu.cn
  • show less
    DOI: 10.1364/PRJ.395305 Cite this Article Set citation alerts
    Jintian Lin, Fang Bo, Ya Cheng, Jingjun Xu. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 2020, 8(12): 1910 Copy Citation Text show less
    References

    [1] L. A. Coldren, S. W. Corzine, M. L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits(2012).

    [2] R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman. Large-scale photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 11, 50-65(2005).

    [3] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson. All-optical control of light on a silicon chip. Nature, 431, 1081-1084(2004).

    [4] A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, T.-Y. Liow. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron., 20, 405-416(2014).

    [5] L. Pavesi. Will silicon be the photonic material of the third millenium. J. Phys. Condens. Matter, 15, R1169-R1196(2003).

    [6] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [7] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600-4615(2006).

    [8] W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, J. Yao. A fully reconfigurable photonic integrated signal processor. Nat. Photonics, 10, 190-195(2016).

    [9] R. Nagarajan, M. Kato, D. Lambert, P. Evans, S. Corzine, V. Lal, J. Rahn, A. Nilsson, M. Fisher, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, D. Krause, H. Sun, K.-T. Wu, M. Ziari, T. Butrie, M. Reffle, M. Mitchell, F. Kish, D. Welch. Terabit/s class InP photonic integrated circuits. Semicond. Sci. Technol., 27, 094003(2012).

    [10] L. Junqiu, E. Lucas, A. S. Rasa, J. He, J. Riemensberger, N. R. Wang, M. Karpov, H. Guo, R. Bouchand, T. J. Kippenberg. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [11] W. D. Sacher, Y. Huang, G.-Q. Lo, J. K. S. Poon. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightwave Technol., 33, 901-910(2015).

    [12] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [13] C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, K.-J. Boller. Silicon nitride microwave photonic circuits. Opt. Express, 21, 22937-22961(2013).

    [14] L. Splitthoff, M. A. Wolff, T. Grottke, C. Schuck. Tantalum pentoxide nanophotonic circuits for integrated quantum technology. Opt. Express, 28, 11921-11932(2020).

    [15] M. Belt, M. L. Davenport, J. E. Bowers, D. J. Blumenthal. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica, 4, 532-536(2017).

    [16] P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton. Polymer micro-ring filters and modulators. J. Lightwave Technol., 20, 1968-1975(2002).

    [17] O. Alibart, V. D’Auria, M. D. Micheli, F. Doutrev, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, S. Tanzilli. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt., 18, 104001(2016).

    [18] H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, S. N. Zhu. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett., 113, 103601(2014).

    [19] Q. Li, Q. Wu, Y. Li, C. Zhang, Z. Jia, J. Yao, J. Sun, J. Xu. Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating. Photon. Res., 6, 789-793(2018).

    [20] B. Zhang, S. Li, S. Chai, X. Wu, J. Ma, L. Chen, Y. Li. Nonlinear distortion and spatial dispersion of intense terahertz generation in lithium niobate via the tilted pulse front technique. Photon. Res., 6, 959-964(2018).

    [21] Q. Zhang, M. Li, J. Xu, Z. Lin, H. Yu, M. Wang, Z. Fang, Y. Cheng, Q. Gong, Y. Li. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photon. Res., 7, 503-507(2019).

    [22] F. Chen. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams. J. Appl. Phys., 106, 081101(2009).

    [23] G. Poberaj, H. Hu, W. Sohler, P. Guenter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev., 6, 488-503(2012).

    [24] H. Hu, J. Yang, L. Gui, W. Sohler. Lithium niobate-on-insulator (LNOI): status and perspectives. Proc. SPIE, 8431, 84311D(2012).

    [25] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).

    [26] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [27] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photon. Rev., 14, 2000088(2020).

    [28] M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, H. Bakhru. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett., 73, 2293-2295(1998).

    [29] P. Rabiei, P. Günter. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett., 85, 4603-4605(2004).

    [30] A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics, 1, 407-410(2007).

    [31] J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, Y. Cheng. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials, 9, 1218(2019).

    [32] J. Zhou, R. Gao, J. Lin, M. Wang, W. Chu, W. Li, D. Yin, L. Deng, Z. Fang, J. Zhang, R. Wu, Y. Cheng. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett., 37, 084201(2020).

    [33] R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 8(2018).

    [34] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [35] J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, Y. Cheng. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep., 5, 8072(2015).

    [36] R. Wang, S. A. Bhave. Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators(2014).

    [37] J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, J. Xu. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072-23078(2015).

    [38] C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, M. Lončar. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924-30933(2014).

    [39] J. Lin, Y. Xu, Z. Fang, J. Song, N. Wang, L. Qiao, W. Fang, Y. Cheng. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining(2014).

    [40] J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, Y. Cheng. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Sci. China Phys. Mech. Astron., 58, 114209(2015).

    [41] H. Liang, R. Luo, Y. He, H. Jiang, Q. Lin. High-quality lithium niobate photonic crystal nanocavities. Optica, 4, 1251-1258(2017).

    [42] R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, E.-B. Kley. Light propagation in a free-standing lithium niobate photonic crystal waveguide. Appl. Phys. Lett., 97, 131109(2010).

    [43] F. Sulser, G. Poberaj, M. Koechlin, P. Günter. Photonic crystal structures in ion-sliced lithium niobate thin films. Opt. Express, 17, 20291-20300(2009).

    [44] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [45] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [46] A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, D. W. Prather. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810-14816(2018).

    [47] A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, D. W. Prather. 110  GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express, 24, 15590-15595(2016).

    [48] L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, M. Lončar. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).

    [49] Y. D. Dahmani, C. J. Sarabalis, W. Jiang, F. M. Mayor, A. H. Safavi-Naeini. Piezoelectric transduction of a wavelength-scale mechanical waveguide. Phys. Rev. Appl., 13, 024069(2020).

    [50] W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. V. Laer, A. H. Safavi-Naeini. Lithium niobate piezo-optomechanical crystals. Optica, 6, 845-853(2019).

    [51] J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [52] I. W. Frank, J. Moore, J. K. Douglas, R. Camacho, M. Eichenfield. Entangled photon generation in lithium niobate microdisk resonators through spontaneous parametric down conversion. Conference on Lasers and Electro-Optics (CLEO), SM2E.6(2016).

    [53] R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, Q. Lin. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express, 25, 24531-24539(2017).

    [54] Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, S. Zhu. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).

    [55] J. Lu, J. B. Surya, X. Liu, Y. Xu, H. X. Tang. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt. Lett., 44, 1492-1495(2019).

    [56] A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, G. F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, S. Fathpour. Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides. Conference on Lasers and Electro-Optics (CLEO), JTh3C.2(2018).

    [57] Z. Gong, X. Liu, Y. Xu, M. Xu, J. B. Surya, J. Lu, A. Bruch, C. Zou, H. X. Tang. Soliton microcomb generation at 2  μm in z-cut lithium niobate microring resonators. Opt. Lett., 44, 3182-3185(2019).

    [58] Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, Q. Lin. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

    [59] K. Jia, X. Wang, X. Ni, J. Guo, Z. Xie, S.-W. Huang, S.-N. Zhu. 2  μm microcomb generation from a monolithic lithium niobate optical parametric oscillator. Conference on Lasers and Electro-Optics (CLEO), SM3L.7(2020).

    [60] C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, M. Lončar. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [61] M. Xu, M. He, X. Cai. Generation of flat optical frequency comb using integrated cascaded lithium niobate modulators. Conference on Lasers and Electro-Optics (CLEO), STh1O.5(2020).

    [62] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Lončar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [63] D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photonics, 14, 24-29(2020).

    [64] A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picque, M. Loncar. An integrated lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy(2020).

    [65] Z. Yu, Y. Tong, H. K. Tsang, X. Sun. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun., 11, 2602(2020).

    [66] T.-J. Wang, C.-H. Chu, C.-Y. Lin. Electro-optically tunable microring resonators on lithium niobate. Opt. Lett., 32, 2777-2779(2007).

    [67] M. Prost, G. Liu, S. J. B. Yoo. A compact thin-film lithium niobate platform with arrayed waveguide gratings and MMIs. Optical Fiber Communications Conference and Exposition (OFC), 1-3(2018).

    [68] S. Fathpour. Heterogeneous nonlinear integrated photonics. IEEE J. Quantum Electron., 54, 6300716(2018).

    [69] M. Jin, J.-Y. Chen, Y. M. Sua, Y.-P. Huang. High-extinction electro-optic modulation on lithium niobate thin film. Opt. Lett., 44, 1265-1268(2019).

    [70] A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, S. Fathpour. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz. Opt. Lett., 41, 5700-5703(2016).

    [71] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100  Gbit s–1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [72] J. Wang, W. Ji, R. Yin, Z. Gong, X. Li, S. Zhang, C. Wu. Integrated polarization multiplexing IQ modulator based on lithium niobate thin film and all waveguide structure. Optik, 152, 127-135(2018).

    [73] M. Mahmoud, L. Cai, C. Bottenfield, G. Piazza. Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform. IEEE Photon. J., 10, 6600410(2018).

    [74] B. Zhang, L. Wang, F. Chen. Recent Advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photon. Rev., 14, 1900407(2020).

    [75] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287-1320(2020).

    [76] J. E. Toney, M. Shnider, N. Smith, P. Pontius, J. Busch, V. E. Stenger, A. Pollick, S. Sriram. Low voltage, high speed electro-optic scanner and switch in thin film lithium niobate. Proc. SPIE, 8497, 849709(2012).

    [77] V. E. Stenger, J. E. Toney, J. Scholl, J. Busch, A. Pollick, P. Pontius, S. Sriram. Wide-band electro-optic modulator in thin-film lithium niobate on quartz substrate. 38th European Conference and Exhibition on Optical Communications, 1-3(2012).

    [78] J. E. Toney, V. E. Stenger, P. Pontius, N. Smith, J. Scholl, A. Pollick, B. Sadani, H. Lu, M.-P. Bernal, S. Sriram. Photonic crystal electro-optic devices in engineered thin film lithium niobate substrates. Proc. SPIE, 8376, 83760H(2012).

    [79] K. Nassau, H. J. Levinstein, G. M. Loiacono. The domain structure and etching of ferroelectric lithium niobate. Appl. Phys. Lett., 6, 228-229(1965).

    [80] N. Niizeki, T. Yamada, H. Toyoda. Growth ridges, etched hillocks, and crystal structure of lithium niobate. Jpn. J. Appl. Phys., 6, 318-327(1967).

    [81] S. Benchabane, L. Robert, J.-Y. Rauch, A. Khelif, V. Laude. Highly selective electroplated nickel mask for lithium niobate dry etching. J. Appl. Phys., 105, 094109(2009).

    [82] H. J. Lee, S.-Y. Shin. Lithium niobate ridge waveguides fabricated by wet etching. Electron. Lett., 31, 268-269(1995).

    [83] F. Laurell, J. Webjorn, G. Arvidsson, J. Holmberg. Wet etching of proton-exchanged lithium niobate-a novel processing technique. J. Lightwave Technol., 10, 1606-1609(1992).

    [84] V. Dobrusin, S. Ruschin, L. Shpisman. Fabrication method of low-loss large single mode ridge Ti: LiNbO3 waveguides. Opt. Mater., 29, 1630-1634(2007).

    [85] H. Hu, R. Ricken, W. Sohler. Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium. Appl. Phys. B, 98, 677-679(2010).

    [86] H. Hu, R. Ricken, W. Sohler, R. B. Wehrspohn. Lithium niobate ridge waveguides fabricated by wet etching. IEEE Photon. Technol. Lett., 19, 417-419(2007).

    [87] M. Kawabe, M. Kubota, K. Masuda, S. Namba. Microfabrication in LiNbO3 by ion-bombardment-enhanced etching. J. Vac. Sci. Technol., 15, 1096-1098(1978).

    [88] F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, W. Wesch. Ion beam enhanced etching of LiNbO3. Nucl. Instrum. Methods Phys. Res. B, 250, 164-168(2006).

    [89] R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, T. Pertsch. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation. Opt. Lett., 40, 2715-2718(2015).

    [90] M. Minakata. Efficient LiNbO3 balanced bridge modulator/switch with an ion-etched slot. Appl. Phys. Lett., 35, 40-42(1979).

    [91] I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, E. H. Turner. Lithium niobate ridge waveguide modulator. Appl. Phys. Lett., 24, 622-624(1974).

    [92] H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, W. Sohler. Plasma etching of proton-exchanged lithium niobate. J. Vac. Sci. Technol. A, 24, 1012-1015(2006).

    [93] J. L. Jackel, R. E. Howard, E. L. Hu, S. P. Lyman. Reactive ion etching of LiNbO3. Appl. Phys. Lett., 38, 907-909(1981).

    [94] T. Masashi, S. Yoshikado. Etching characteristics of LiNbO3 crystal by fluorine gas plasma reactive ion etching. Sci. Technol. Adv. Mater., 2, 563-569(2001).

    [95] S. Matsui, T. Yamato, H. Aritome, S. Namba. Microfabrication of LiNbO3 by reactive ion-beam etching. Jpn. J. Appl. Phys., 19, L463-L465(1980).

    [96] K. Noguchi, O. Mitomi, K. Kawano, M. Yanagibashi. Highly efficient 40 GHz bandwidth Ti:LiNbO3 optical modulator employing ridge structure. IEEE Photon. Technol. Lett., 5, 52-54(1993).

    [97] W. J. Park, W. S. Yang, W. K. Kim, H. Y. Lee, J.-W. Lim, M. Isshiki, D. H. Yoon. Ridge structure etching of LiNbO3 crystal for optical waveguide applications. Opt. Mater., 28, 216-220(2006).

    [98] P. Rabiei, W. H. Steier. Lithium niobate ridge waveguides and modulators fabricated using smart guide. Appl. Phys. Lett., 86, 161115(2005).

    [99] Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, S. Yu. Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma. J. Appl. Phys., 103, 034109(2008).

    [100] R. Wolf, I. Breunig, H. Zappe, K. Buse. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express, 25, 29927-29933(2017).

    [101] M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, Y. Cheng. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng., 1, e9(2019).

    [102] R. Wu, J. Lin, M. Wang, Z. Fang, W. Chu, J. Zhang, J. Zhou, Y. Cheng. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish. Opt. Lett., 44, 4698-4701(2019).

    [103] R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116-4119(2018).

    [104] S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, T. Pertsch. Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes. Appl. Phys. Lett., 103, 251101(2013).

    [105] S. Yin. Fabrication of high-aspect-ratio submicron-to-nanometer range microstructures in LiNbO3 for the next generation of integrated optoelectronic devices by focused ion beams (FIB). Microw. Opt. Technol. Lett., 22, 396-398(1999).

    [106] F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, M. Spajer. Nanostructuring lithium niobate substrates by focused ion beam milling. Opt. Mater., 27, 1421-1425(2005).

    [107] B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, J. Xu. Lithium niobate metasurfaces. Laser Photon. Rev., 13, 1800312(2019).

    [108] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 92, 043903(2004).

    [109] M. Wang, N. Yao, R. Wu, Z. Fang, S. Lv, J. Zhang, L. Qiao, J. Lin, W. Fang, Y. Cheng. Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules. New J. Phys., 22, 073030(2020).

    [110] L.-K. Chen, Y.-F. Xiao. On-chip lithium niobate microresonators for photonics applications. Sci. China Phys. Mech. Astron., 63, 224231(2020).

    [111] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006-1011(2018).

    [112] R. Luo, Y. He, H. Liang, M. Li, J. Ling, Q. Lin. Optical parametric generation in a lithium niobate microring with modal phase matching. Phys. Rev. Appl., 11, 034026(2019).

    [113] J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, H. X. Tang. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455-1460(2019).

    [114] M. Li, H. Liang, R. Luo, Y. He, J. Ling, Q. Lin. Photon-level tuning of photonic nanocavities. Optica, 6, 860-863(2019).

    [115] C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, M. Lončar. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express, 25, 6963-6973(2017).

    [116] J.-Y. Chen, Z.-H. Ma, Y. M. Sua, Z. Li, C. Tang, Y.-P. Huang. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244-1245(2019).

    [117] L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photon. Res., 7, 1003-1013(2019).

    [118] W. S. Yang, H.-Y. Lee, W. K. Kim, D. H. Yoon. Asymmetry ridge structure fabrication and reactive ion etching of LiNbO3. Opt. Mater., 27, 1642-1646(2005).

    [119] G. Ulliac, B. Guichardaz, J.-Y. Rauch, S. Queste, S. Benchabane, N. Courjal. Ultra-smooth LiNbO3 micro and nano structures for photonic applications. Microelectron. Eng., 88, 2417-2419(2011).

    [120] S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, H.-Y. Lee, W. J. Jeong, M. K. Song, D. H. Yoon. The ridge waveguide fabrication with periodically poled MgO-doped lithium niobate for green laser. Appl. Surf. Sci., 254, 1101-1104(2007).

    [121] T. Tsuchiya, K. Sugano, H. Takahashi, H. Seo, Y. Pihosh, Y. Kazoe, K. Mawatari, T. Kitamori, O. Tabata. Dry etching and low-temperature direct bonding process of lithium niobate wafer for fabricating micro/nano channel device. 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 1245-1248(2017).

    [122] L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, Y.-F. Xiao. High-Q chaotic lithium niobate microdisk cavity. Opt. Lett., 43, 2917-2920(2018).

    [123] L. Zhang, D. Zheng, W. Li, F. Bo, F. Gao, Y. Kong, G. Zhang, J. Xu. Microdisk resonators with lithium-niobate film on silicon substrate. Opt. Express, 27, 33662-33669(2019).

    [124] D. Jun. Fabrication methodologies for integrated photonic devices in lithium niobate(2013).

    [125] R. Wolf, I. Breunig, H. Zappe, K. Buse. Scattering-loss reduction of ridge waveguides by sidewall polishing. Opt. Express, 26, 19815-19820(2018).

    [126] J. Lin, J. Zhou, R. Wu, M. Wang, Z. Fang, W. Chu, J. Zhang, L. Qiao, Y. Cheng. High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator. Micromachines, 10(2019).

    [127] S. Zhu. Meter-level optical delay line on a low-loss lithium niobate nanophotonics chip. Chin. Phys. Lett., 37, 080102(2020).

    [128] R. Takigawa, E. Higurashi, T. Kawanishi, T. Asano. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method. Opt. Express, 22, 27733-27738(2014).

    [129] R. Takigawa, K. Kamimura, K. Asami, K. Nakamoto, T. Tomimatsu, T. Asano. Fabrication of a bonded LNOI waveguide structure on Si substrate using ultra-precision cutting. Jpn. J. Appl. Phys., 59, SBBD03(2020).

    [130] G. Li, Y. Chen, H. Jiang, X. Chen. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band. Opt. Lett., 42, 939-942(2017).

    [131] B. A. Fuchs, C. Syn, S. P. Velsko. Diamond turning of lithium niobate for optical applications. Appl. Opt., 31, 5788-5793(1992).

    [132] T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, T. W. Hänsch. Efficient 494  mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn: LiNbO3 ridge waveguide. Opt. Express, 17, 17792-17800(2009).

    [133] J. Sun, Y. Gan, C. Xu. Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide. Opt. Lett., 36, 549-551(2011).

    [134] T. Ding, Y. Zheng, X. Chen. Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip. Opt. Lett., 44, 1524-1527(2019).

    [135] M. F. Volk, S. Suntsov, C. E. Rüter, D. Kip. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing. Opt. Express, 24, 1386-1391(2016).

    [136] N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, M.-P. Bernal. Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing. Opt. Express, 23, 13983-13990(2015).

    [137] T. Ding, Y. Zheng, X. Chen. On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide. J. Lightwave Technol., 37, 1296-1300(2019).

    [138] I. Hendry, L. S. Trainor, Y. Xu, S. Coen, S. G. Murdoch, H. G. L. Schwefel, M. Erkintalo. Experimental observation of internally pumped parametric oscillation and quadratic comb generation in a χ(2) whispering-gallery-mode microresonator. Opt. Lett., 45, 1204-1207(2019).

    [139] R. Takigawa, E. Higurashi, T. Kawanishi, T. Asano. Demonstration of ultraprecision ductile-mode cutting for lithium niobate microring waveguides. Jpn. J. Appl. Phys., 55, 110304(2016).

    [140] N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, M.-P. Bernal. High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing. J. Phys. D, 44, 305101(2011).

    [141] J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, G. Leuchs. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett., 104, 153901(2010).

    [142] D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, P. Kumar. Optical sum-frequency generation in a whispering-gallery-mode resonator. New J. Phys., 16, 053025(2014).

    [143] I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, L. Maleki. Ultra high Q crystalline microcavities. Opt. Commun., 265, 33-38(2006).

    [144] M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt. A versatile source of single photons for quantum information processing. Nat. Commun., 4, 1818(2013).

    [145] I. Grudinin, V. Ilchenko, A. Matsko, A. Savchenkov, L. Maleki. Crystalline Micro-resonators: Status and Applications(2006).

    [146] L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, J. E. Bowers. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531-535(2016).

    [147] L. Chang, M. H. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, J. E. Bowers. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett., 42, 803-806(2017).

    [148] A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, S. Fathpour. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon. Opt. Express, 24, 29941-29947(2016).

    [149] P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour. Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express, 21, 25573-25581(2013).

    [150] L. Chen, Q. Xu, M. G. Wood, R. M. Reano. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112-118(2014).

    [151] P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, S. Mookherjea. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics. Sci. Rep., 6, 22301(2016).

    [152] L. Chen, J. Nagy, R. M. Reano. Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon. Opt. Mater. Express, 6, 2460-2467(2016).

    [153] J. Chiles, S. Fathpour. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica, 1, 350-355(2014).

    [154] A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, S. Fathpour. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746-22752(2015).

    [155] P. Rabiei, A. Rao, J. Chiles, J. Ma, S. Fathpour. Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates. Opt. Lett., 39, 5379-5382(2014).

    [156] Z. Yu, X. Xi, J. Ma, H. K. Tsang, C.-L. Zou, X. Sun. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2020).

    [157] C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, G. C. Guo. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev., 9, 114-119(2015).

    [158] J. E. Toney. Lithium Niobate Photonics(2015).

    [159] H. Hu, R. Ricken, W. Sohler. Lithium niobate photonic wires. Opt. Express, 17, 24261-24268(2009).

    [160] Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, J. Xu. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci. China Phys. Mech. Astron., 61, 114211(2018).

    [161] M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, B. Dahmani. High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon. J. Opt., 18, 085503(2016).

    [162] H. Hu, L. Gui, R. Ricken, W. Sohler. Towards nonlinear photonic wires in lithium niobate. Proc. SPIE, 7604, 76040R(2010).

    [163] P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, A. Zrenner. Periodic domain inversion in x-cut single-crystal lithium niobate thin film. Appl. Phys. Lett., 108, 152902(2016).

    [164] R. V. Gainutdinov, T. R. Volk, H. H. Zhang. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates. Appl. Phys. Lett., 107, 162903(2015).

    [165] G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, Y.-Q. Lu. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses. AIP Adv., 6, 075011(2016).

    [166] Z. Hao, L. Zhang, W. Mao, A. Gao, X. Gao, F. Gao, F. Bo, G. Zhang, J. Xu. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photon. Res., 8, 311(2020).

    [167] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [168] X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, Y. Sheng. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett., 107, 141102(2015).

    [169] D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, Y. N. Wang. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl. Phys. Lett., 37, 607-609(1980).

    [170] L. Zhang, Z. Hao, W. Mao, A. Gao, F. Bo, F. Gao, G. Zhang, J. Xu. Biperiodically poled lithium niobate microcavities for multiple nonlinear optical processes. Conference on Lasers and Electro-Optics (CLEO), JTh2E.17.(2020).

    [171] J.-Y. Chen, Y. M. Sua, Z.-H. Ma, C. Tang, Z. Li, Y.-P. Huang. Efficient parametric frequency conversion in lithium niobate nanophotonic chips. OSA Contin., 2, 2914-2924(2019).

    [172] J. Zhao, C. Ma, M. Rusing, S. Mookherjea. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [173] J. Zhao, M. Rusing, S. Mookherjea. Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides. Opt. Express, 27, 12025-12038(2019).

    [174] M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, M. M. Fejer. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 7, 40-46(2020).

    [175] J. T. Nagy, K. Prabhakar, R. M. Reano. In situ temporal periodic poling of lithium niobate thin films. Conference on Lasers and Electro-Optics (CLEO), SW3F.3(2020).

    [176] J. Zhao, M. Ruesing, M. Roeper, L. M. Eng, S. Mookherjea. Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity. J. Appl. Phys., 127, 193104(2020).

    [177] G. Ulliac, V. Calero, A. Ndao, F. Baida, M.-P. Bernal. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application. Opt. Mater., 53, 1-5(2016).

    [178] S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, A. J. Danner. Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening. Opt. Express, 26, 4421-4430(2018).

    [179] C. Wang, M. Zhang, B. Stern, M. Lipson, M. Lončar. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).

    [180] I. Krasnokutska, J.-L. J. Tambasco, X. Li, A. Peruzzo. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express, 26, 897-904(2018).

    [181] B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, M. Lončar. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 6, 380-384(2019).

    [182] J. Lin, J. Zhou, R. Gao, M. Wang, R. Wu, Z. Fang, J. Zhang, Y. Cheng. High-precision measurement of a propagation loss of low-loss single-mode optical waveguides on lithium niobate on insulator. Proc. SPIE, 11266, 1126607(2020).

    [183] S. Li, L. Cai, Y. Wang, Y. Jiang, H. Hu. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe. Opt. Express, 23, 24212-24219(2015).

    [184] R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, H. Zappe. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 5, 872-875(2018).

    [185] Y. He, H. Liang, R. Luo, M. Li, Q. Lin. Dispersion engineered high quality lithium niobate microring resonators. Opt. Express, 26, 16315-16322(2018).

    [186] A. Pan, C. Hu, C. Zeng, J. Xia. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt. Express, 27, 35659-35669(2019).

    [187] L. Ge, H. Jiang, B. Zhu, C. Lu, Y. Chen, X. Chen. Quality improvement and mode evolution of high-Q lithium niobate micro-disk induced by ‘light annealing’. Opt. Mater. Express, 9, 1632-1639(2019).

    [188] H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, Q. Lin. Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Appl. Phys. Lett., 113, 021104(2018).

    [189] I. Krasnokutska, J.-L. J. Tambasco, A. Peruzzo. Tunable large free spectral range microring resonators in lithium niobate on insulator. Sci. Rep., 9, 11086(2019).

    [190] M. Churaev, S. Hönl, R. N. Wang, C. Möhl, T. Liu, J. C. Skehan, J. Riemensberger, D. Caimi, J. Liu, P. Seidler, T. J. Kippenberg. Hybrid Si3N4-LiNbO3 integrated platform for electro-optic conversion. Conference on Lasers and Electro-Optics (CLEO), STh1F.3(2020).

    [191] E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. J. Fritz, G. J. McBrien, D. E. Bossi. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum. Electron., 6, 69-82(2000).

    [192] K. Luke, P. Kharel, C. Reimer, L. He, M. Loncar, M. Zhang. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).

    [193] J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, A. H. Safavi-Naeini. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci. Rep., 7, 46313(2017).

    [194] A. N. R. Ahmed, S. Shi, M. Zablocki, P. Yao, D. W. Prather. Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt. Lett., 44, 618-621(2019).

    [195] A. N. R. Ahmed, S. Nelan, S. Shi, P. Yao, A. Mercante, D. W. Prather. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Opt. Lett., 45, 1112-1115(2020).

    [196] Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, W. H. Steier. Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices. Opt. Lett., 36, 1119-1121(2011).

    [197] M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, Q. Lin. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun., 11, 4123(2020).

    [198] M. Bazzan, C. Sada. Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev., 2, 040603(2015).

    [199] M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, Y. Cheng. On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Opt. Express, 25, 124-129(2017).

    [200] J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, M. Loncar. Toward efficient microwave-optical transduction using cavity electro-optics in thin-film lithium niobate. Conference on Lasers and Electro-Optics (CLEO), FTh4D.5(2020).

    [201] Y. Yang, M. Bahadori, A. E. Hassanien, L. L. Goddard, S. Gong. An isotropic lithium niobate microring resonator with a 1.38-nm wide continuous tuning range using 80  V. Conference on Lasers and Electro-Optics (CLEO), JTh2F.27(2020).

    [202] T.-J. Wang, G.-L. Peng, M.-Y. Chan, C.-H. Chen. On-chip optical microresonators with high electro-optic tuning efficiency. J. Lightwave Technol., 38, 1851-1857(2019).

    [203] M. Bahadori, L. L. Goddard, S. Gong. Fundamental electro-optic limitations of thin-film lithium niobate microring modulators. Opt. Express, 28, 13731-13749(2020).

    [204] M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, G. Ribeill, M. Soltani, M. Loncar. Microwave-to-optical converter based on integrated lithium niobite coupled-resonators. Conference on Lasers and Electro-Optics (CLEO), SM1I.7(2018).

    [205] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. 100-GHz low voltage integrated lithium niobate modulators. Conference on Lasers and Electro-Optics (CLEO), SM3B.4(2018).

    [206] L. Chen, M. G. Wood, R. M. Reano. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes. Opt. Express, 21, 27003-27010(2013).

    [207] P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck. Hybrid silicon photonic-lithium niobate electro-optic Mach–Zehnder modulator beyond 100 GHz(2018).

    [208] S. Jin, L. Xu, H. Zhang, Y. Li. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photon. Technol. Lett., 28, 736-739(2015).

    [209] A. S. Alam, M. Girardi, A. Caut, A. Larsson, V. Torres-Company, M. Galili, Y. Ding, K. Yvind. LiNbO3/Si3N4-bilayer vertical coupler for integrated photonics. Conference on Lasers and Electro-Optics (CLEO), STu4J.7(2020).

    [210] S. Sun, M. He, S. Yu, X. Cai. Hybrid silicon and lithium niobate Mach-Zehnder modulators with high bandwidth operating at C-band and O-band. Conference on Lasers and Electro-Optics (CLEO), STh1F.4(2020).

    [211] A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, D. W. Prather. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express, 24, 15590-15595(2016).

    [212] D. A. B. Miller. Perfect optics with imperfect components. Optica, 2, 747-750(2015).

    [213] X. Li, M. Wang, J. Li, K. Chen. Monolithic 1×4 reconfigurable electro-optic tunable interleaver in lithium niobate thin film. IEEE Photon. Technol. Lett., 31, 1611-1614(2019).

    [214] J. Jian, M. Xu, L. Liu, Y. Luo, J. Zhang, L. Liu, L. Zhou, H. Chen, S. Yu, X. Cai. High modulation efficiency lithium niobate Michelson interferometer modulator. Opt. Express, 27, 18731-18739(2019).

    [215] L. Shao, W. Mao, S. Maity, N. Sinclair, Y. Hu, L. Yang, M. Lončar. Nonreciprocal acoustic transmission using lithium niobate parity-time-symmetric resonators. Conference on Lasers and Electro-Optics (CLEO), FTh4Q.2(2020).

    [216] L. Shao, N. Sinclair, J. Leatham, Y. Hu, M. Yu, T. Turpin, D. Crowe, M. Loncar. Integrated lithium niobate acousto-optic frequency shifter. Conference on Lasers and Electro-Optics (CLEO), STh1F.5(2020).

    [217] L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, M. Loncar. Integrated lithium niobate acousto-optic cavities for microwave-to-optical conversion. Conference on Lasers and Electro-Optics (CLEO), FM2R.1(2020).

    [218] Z. Yu, X. Sun. Acousto-optic modulation of photonic bound state in the continuum. Conference on Lasers and Electro-Optics (CLEO), STh1F.6(2020).

    [219] C. J. Sarabalis, T. P. McKenna, R. N. Patel, A. H. Safavi-Naeini. Acousto-optics in lithium niobate-on-sapphire. Conference on Lasers and Electro-Optics (CLEO), FTh3C.5(2020).

    [220] G. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon., 9, 828-890(2017).

    [221] Y. Li, X. Jiang, G. Zhao, L. Yang. Whispering gallery mode microresonator for nonlinear optics(2018).

    [222] I. Breunig. Three-wave mixing in whispering gallery resonators. Laser Photon. Rev., 10, 569-587(2016).

    [223] G. Lin, Y. K. Chembo. Monolithic total internal reflection resonators for applications in photonics. Opt. Mater. X, 2, 100017(2019).

    [224] M. Santandrea, M. Stefszky, C. Silberhorn. General framework for the analysis of imperfections in nonlinear systems. Opt. Lett., 44, 5398-5401(2019).

    [225] J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, M. Eichenfield. Efficient second harmonic generation in lithium niobate on insulator. Conference on Lasers and Electro-Optics (CLEO), STh3P.1(2016).

    [226] L. Wang, L.-Q. Li, X.-T. Zhang, F. Chen. Type I phase matching in thin film of lithium niobate on insulator. Results Phys., 16, 103011(2020).

    [227] L. Cai, A. V. Gorbach, Y. Wang, H. Hu, W. Ding. Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides. Sci. Rep., 8, 12478(2018).

    [228] P. Main, P. J. Mosley, W. Ding, L. Zhang, A. V. Gorbach. Hybrid microfiber-lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources. Phys. Rev. A, 94, 063844(2016).

    [229] J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, Y. Cheng. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl., 6, 014002(2016).

    [230] H. Hu, D. Büchter, R. Ricken, W. Sohler. Periodically poled LNOI photonic wires. 15th European Conference on Integrated Optics (ECIO 10), FrPD3(2010).

    [231] L. Gui. Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions(2010).

    [232] L. Gui, H. Hu, M. Garcia-Granda, W. Sohler. Local periodic poling of ridges and ridge waveguides on X- and Y-cut LiNbO3 and its application for second harmonic generation. Opt. Express, 17, 3923-3928(2009).

    [233] A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, S. Fathpour. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W–1 cm–2. Opt. Express, 27, 25920-25930(2019).

    [234] J.-Y. Chen, Y. M. Sua, Z. Ma, L. Nguyen, Y.-P. Huang. Phase-sensitive amplification in nanophotonic periodically poled lithium niobate waveguides. Conference on Lasers and Electro-Optics (CLEO), SM3L.5(2020).

    [235] V. S. Ilchenko, A. B. Matsko, A. A. Savchenkov, L. Maleki. Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes. J. Opt. Soc. Am. B, 20, 1304-1308(2003).

    [236] L. Zhang, Z. Hao, Q. Luo, A. Gao, R. Zhang, C. Yang, F. Gao, F. Bo, G. Zhang, J. Xu. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt. Lett., 45, 3353-3356(2020).

    [237] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [238] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [239] M. Yu, C. Wang, M. Zhang, M. Loncar. Chip-based lithium-niobate frequency combs. IEEE Photon. Technol. Lett., 31, 1894-1897(2019).

    [240] E. Tsao, S.-W. Huang. Monostable single dissipative Kerr soliton generation in a periodically poled lithium niobate microresonator. Conference on Lasers and Electro-Optics (CLEO), JTu2F.27(2020).

    [241] H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, Q. Lin. Fast response of photorefraction in lithium niobate microresonator. Opt. Lett., 42, 3267-3270(2017).

    [242] W. Johnston, I. Kaminow, J. Bergman. Stimulated Raman gain coefficients for Li6NbO3, Ba2NaNb5O15, and other materials. Appl. Phys. Lett., 13, 190-193(1968).

    [243] R. F. Schaufele, M. J. Weber. Raman scattering by lithium niobate. Phys. Rev., 152, 705(1966).

    [244] A. B. Barker, R. Loudon. Dielectric properties and optical phonons in LiNbO3. Phys. Rev., 158, 433(1967).

    [245] S. Spillane, T. Kippenberg, K. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 415, 621-623(2002).

    [246] G. Lin, Y. K. Chembo. Phase-locking transition in Raman combs generated with whispering gallery mode resonators. Opt. Lett., 41, 3718-3721(2016).

    [247] T. Hansson, D. Modotto, S. Wabnitz. Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt. Lett., 39, 6747-6750(2014).

    [248] L. Maleki, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko. Whispering gallery mode lithium niobate microresonators for photonics applications. Proc. SPIE, 5104, 1-13(2003).

    [249] M. Leidinger, B. Sturman, K. Buse, I. J. O. l. Breunig. Strong forward-backward asymmetry of stimulated Raman scattering in lithium-niobate-based whispering gallery resonators. Opt. Lett., 41, 2823-2826(2016).

    [250] Z. Fang, H. Luo, J. Lin, M. Wang, J. Zhang, R. Wu, J. Zhou, W. Chu, T. Lu, Y. Cheng. Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. Opt. Lett., 44, 5953-5956(2019).

    [251] M. Yu, Y. Okawachi, R. Cheng, C. Wang, M. Zhang, A. L. Gaeta, M. Lončar. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci. Appl., 9, e9(2020).

    [252] S. Mosca, M. Parisi, I. Ricciardi, F. Leo, T. Hansson, M. Erkintalo, P. Maddaloni, P. D. Natale, S. Wabnitz, M. D. Rosa. Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator. Phys. Rev. Lett., 121, 093903(2018).

    [253] A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, H. G. L. Schwefel. Resonant electro-optic frequency comb. Nature, 568, 378-381(2019).

    [254] C. Reimer, Y. Hu, A. Shams-Ansari, M. Zhang, M. Lončar. High-dimensional frequency crystals and quantum walks in electro-optic microcombs(2019).

    [255] T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, M. Lončar. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photon. Technol. Lett., 31, 889-892(2019).

    [256] M. Xu, M. He, X. Liu, Y. Pan, S. Yu, X. Cai. Integrated lithium niobate modulator and frequency comb generator based on Fabry-Perot resonators. Conference on Lasers and Electro-Optics (CLEO), JTh2B.27(2020).

    [257] B.-X. Xiang, L. Wang, Y.-J. Ma, L. Yu, H.-P. Han, S.-C. Ruan. Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching. Chin. Phys. Lett., 34, 024203(2017).

    [258] M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, M. Lončar. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett., 44, 1222-1225(2019).

    [259] Y. Okawachi, M. Yu, B. Desiatov, B. Y. Kim, T. Hansson, M. Lončar, A. L. Gaeta. Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 7, 702-707(2020).

    [260] R. J. O’Brien, G. J. Rosasco, A. Weber. Brillouin scattering in lithium niobate. Light Scattering Spectra of Solids, 623-630(1969).

    [261] S. Wang, L. Yang, R. Cheng, Y. Xu, M. Shen, R. L. Cone, C. W. Thiel, H. X. Tang. Incorporation of erbium ions into thin-film lithium niobate integrated photonics(2019).

    [262] S. Dutta, E. A. Goldschmidt, S. Barik, U. Saha, E. Waks. An integrated photonic platform for rare-earth ions in thin film lithium niobate. Nano Lett., 20, 741-747(2019).

    [263] C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo. Advanced Ti:Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron., 6, 101-113(2000).

    [264] W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, R. Ricken. Erbium-doped lithium niobate waveguide lasers. IEICE Trans. Electron., E88-C, 990-997(2005).

    [265] Y. Sun, C. W. Thiel, R. L. Cone. Optical decoherence and energy level structure of 0.1% Tm3+:LiNbO3. Phys. Rev. B, 85, 165106(2012).

    [266] X. Jiang, D. Pak, A. Nandi, Y. Xuan, M. Hosseini. Rare earth-implanted lithium niobate: properties and on-chip integration. Appl. Phys. Lett., 115, 071104(2019).

    [267] C. W. Thiel, T. Böttger, R. L. Cone. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin., 131, 353-361(2011).

    [268] M. Hempstead, J. S. Wilkinson, L. Reekie. Waveguide lasers operating at 1084 nm in neodymium-diffused lithium niobate. IEEE Photon. Technol. Lett., 4, 852-855(1992).

    [269] C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, W. Sohler. Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates. Proc. SPIE, 8982, 89821G(2014).

    [270] D. Brüske, S. Suntsov, C. E. Rüter, D. Kip. Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion. Opt. Express, 25, 29374-29379(2017).

    [271] M. George, R. Ricken, V. Quiring, W. Sohler. In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser. Laser Photon. Rev., 7, 122-131(2013).

    [272] Y. Pan, S. Sun, M. Xu, M. He, S. Yu, X. Cai. Low fiber-to-fiber loss, large bandwidth and low drive voltage lithium niobate on insulator modulators. Conference on Lasers and Electro-Optics (CLEO), JTh2B.10(2020).

    [273] L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, L. Marko. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt. Lett., 44, 2314-2317(2019).

    [274] N. Yao, J. Zhou, R. Gao, J. Lin, M. Wang, Y. Cheng, W. Fang, L. Tong. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Opt. Express, 28, 12416-12423(2020).

    [275] Z. Chen, Y. Wang, Y. Jiang, R. Kong, H. Hu. Grating coupler on single-crystal lithium niobate thin film. Opt. Mater., 72, 136-139(2017).

    [276] I. Krasnokutska, R. J. Chapman, J.-L. J. Tambasco, A. Peruzzo. High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express, 27, 17681-17685(2019).

    [277] I. Krasnokutska, J.-L. J. Tambasco, A. Peruzzo. Nanostructuring of LNOI for efficient edge coupling. Opt. Express, 27, 16578-16585(2019).

    [278] G. Son, S. Han, J. Park, K. Kwon, K. Yu. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits. Nanophotonics, 7, 1845-1864(2018).

    [279] S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter. Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity. Appl. Phys. Lett., 103, 181104(2013).

    [280] T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletic, M. D. Lukin. Efficient fiber-optical interface for nanophotonic device. Optica, 2, 70-75(2015).

    [281] H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun., 3, 867(2012).

    [282] J. Li, R. Yin, W. Ji, Q. Huang, Z. Gong, L. Lv, X. Zhou. AWG optical filter with tunable central wavelength and bandwidth based on LNOI and electro-optic effect. Opt. Commun., 454, 124445(2020).

    [283] K. Liu, J. Shi, X. Chen. Linear polarization-state generator with high precision in periodically poled lithium niobate. Appl. Phys. Lett., 94, 101106(2009).

    [284] Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, N.-B. Ming. Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Appl. Phys. Lett., 77, 3719-3721(2000).

    [285] W. Yu, S. Dai, Q. Zhao, J. Li, J. Liu. Wideband and compact TM-pass polarizer based on hybrid plasmonic grating in LNOI. Opt. Express, 27, 34857-34863(2019).

    [286] H. Xu, D. Dai, L. Liu, Y. Shi. Proposal for an ultra-broadband polarization beam splitter using an anisotropy-engineered Mach-Zehnder interferometer on the x-cut lithium-niobate-on-insulator. Opt. Express, 28, 10899-10908(2020).

    [287] D. Pohl, F. Kaufmann, M. R. Escalé, J. Holzer, R. Grange. Tunable Bragg grating filters and resonators in lithium niobate-on-insulator waveguides. Conference on Lasers and Electro-Optics (CLEO), STu4J.5(2020).

    [288] A. A. Sayem, R. Cheng, S. Wang, H. X. Tang. Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors. Appl. Phys. Lett., 116, 151102(2020).

    [289] B. Desiatov, M. Lončar. Silicon photodetector for integrated lithium niobate photonics. Appl. Phys. Lett., 115, 121108(2019).

    [290] M. Colangelo, B. Desiatov, D. Zhu, J. Holzgrafe, O. Medeiros, M. Lončar, K. K. Berggren. Superconducting nanowire single-photon detector on thin-film lithium niobate photonic waveguide. Conference on Lasers and Electro-Optics (CLEO), SM4O.4(2020).

    [291] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [292] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljačić. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [293] Z. Ying, C. Feng, Z. Zhao, S. Dhar, H. Dalir, J. Gu, Y. Cheng, R. Soref, D. Z. Pan, R. T. Chen. Electronic-photonic arithmetic logic unit for high-speed computing. Nat. Commun., 11, 2154(2020).

    [294] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    CLP Journals

    [1] Renhong Gao, Ni Yao, Jianglin Guan, Li Deng, Jintian Lin, Min Wang, Lingling Qiao, Wei Fang, Ya Cheng. Lithium niobate microring with ultra-high Q factor above 108[J]. Chinese Optics Letters, 2022, 20(1): 011902

    [2] Xuerui Sun, Yinan Wu, Chuanyi Lu, Yuting Zhang, Hao Li, Shijie Liu, Yuanlin Zheng, Xianfeng Chen. Experimental investigation on the unbalanced Mach–Zehnder interferometer on lithium niobate thin film[J]. Chinese Optics Letters, 2022, 20(10): 101301

    [3] Xiao-Hui Tian, Wei Zhou, Kun-Qian Ren, Chi Zhang, Xiaoyue Liu, Guang-Tai Xue, Jia-Chen Duan, Xinlun Cai, Xiaopeng Hu, Yan-Xiao Gong, Zhenda Xie, Shi-Ning Zhu. Effect of dimension variation for second-harmonic generation in lithium niobate on insulator waveguide [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060015

    [4] Zhaoxi Chen, Jingwei Yang, Wing-Han Wong, Edwin Yue-Bun Pun, Cheng Wang. Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform[J]. Photonics Research, 2021, 9(12): 2319

    [5] Zhenzhong Hao, Li Zhang, Jie Wang, Fang Bo, Feng Gao, Guoquan Zhang, Jingjun Xu. Sum-frequency generation of a laser and its background in an on-chip lithium-niobate microdisk[J]. Chinese Optics Letters, 2022, 20(11): 111902

    [6] Yuechen Jia, Yingying Ren, Xingjuan Zhao, Feng Chen. Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060013

    [7] Shuai Wan, Rui Niu, Jin-Lan Peng, Jin Li, Guang-Can Guo, Chang-Ling Zou, Chun-Hua Dong. Fabrication of the high-Q Si3N4 microresonators for soliton microcombs[J]. Chinese Optics Letters, 2022, 20(3): 032201

    [8] Lingqi Li, Weijin Kong, Feng Chen. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 2022, 4(2): 024002

    [9] Yang Li, Zhijin Huang, Wentao Qiu, Jiangli Dong, Heyuan Guan, Huihui Lu. Recent progress of second harmonic generation based on thin film lithium niobate [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060012

    [10] Yiran Zhu, Yuan Zhou, Zhe Wang, Zhiwei Fang, Zhaoxiang Liu, Wei Chen, Min Wang, Haisu Zhang, Ya Cheng. Electro-optically tunable microdisk laser on Er3+-doped lithium niobate thin film[J]. Chinese Optics Letters, 2022, 20(1): 011303

    [11] Qiang Luo, Chen Yang, Zhenzhong Hao, Ru Zhang, Dahuai Zheng, Fang Bo, Yongfa Kong, Guoquan Zhang, Jingjun Xu. On-chip erbium-doped lithium niobate waveguide amplifiers [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060008

    [12] Biao Mu, Xianfang Wu, Yunfei Niu, Yan Chen, Xinlun Cai, Yanxiao Gong, Zhenda Xie, Xiaopeng Hu, Shining Zhu. Locally periodically poled LNOI ridge waveguide for second harmonic generation [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060007

    [13] Ke Zhang, Zhaoxi Chen, Hanke Feng, Wing-Han Wong, Edwin Yue-Bun Pun, Cheng Wang. High-Q lithium niobate microring resonators using lift-off metallic masks [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060010

    Jintian Lin, Fang Bo, Ya Cheng, Jingjun Xu. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 2020, 8(12): 1910
    Download Citation