• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 6, 951 (2022)
Zhi-Wei LI1、2, Zhuo ZHANG1、2, Jian-Wei ZHANG1、*, Xing ZHANG1, Yin-Li ZHOU1, Yu-Gang ZENG1, Yong-Qiang Ning1, and Li-Jun WANG1
Author Affiliations
  • 1State Key Laboratory of Luminescence and Application,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China
  • 2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.06.002 Cite this Article
    Zhi-Wei LI, Zhuo ZHANG, Jian-Wei ZHANG, Xing ZHANG, Yin-Li ZHOU, Yu-Gang ZENG, Yong-Qiang Ning, Li-Jun WANG. Quantum well modulated optical pumped vertical external cavity surface-emitting laser for dual-wavelength generation[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 951 Copy Citation Text show less
    References

    [1] J Jagerska, P Jouy, A Hugi et al. Dual-wavelength quantum cascade laser for trace gas spectroscopy. Appl. Phys. Lett, 105, 161109(2014).

    [2] Y Shang, X Ye, L Cao et al. Coaxial dual-wavelength interferometric method for a thermal infrared focal-plane-array with integrated gratings. Scientific Reports 2016, 6, 25993.

    [3] K J Siebert, H Quast, R Leonhardt et al. Continuous-wave all-optoelectronic terahertz imaging. Appl. Phys. Lett, 80, 3003-3005(2002).

    [4] J Mei, K Zhong, M Wang et al. Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm. Opt. Express 2016, 24, 23368-23375.

    [5] Ji-Ye ZHANG, Xue LI, Jian-Wei ZHANG et al. Research progress of vertical-cavity surface-emitting laser. Chinese Journal of Luminescence.

    [6] R Paquet, S Blin, M Myara et al. Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz-THz applications. Opt. Lett, 41, 3751-3754(2016).

    [7] S Shutts, P M Smowton, A B Krysa. Dual-wavelength InP quantum dot lasers. Appl. Phys. Lett, 104, 241106(2014).

    [8] R K Price, V B Verma, K E Tobin et al. Y-branch surface-etched distributed bragg reflector lasers at 850 nm for optical heterodyning. IEEE Photonics Technol. Lett, 19, 1610-1612(2007).

    [9] K Nechay, A Mereuta, C Paranthoen et al. High-power 760 nm VECSEL based on quantum dot gain mirror. IEEE J. Quantum Electron, 56, 1-4(2020).

    [10] G Y Hou, S L Shu, J Peng et al. High power (>27 W) semiconductor disk laser based on pre-metalized diamond heat-spreader. IEEE Photonics Journal 2019, 11, 1-8.

    [11] S Calvez, J E Hastie, M Guina et al. Semiconductor disk lasers for the generation of visible and ultraviolet radiation. Laser & Photonics Reviews 2009, 3, 407-434.

    [12] L D Jiang, R J Zhu, M H Jiang et al. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser. Superlattices Microstruct, 113, 785-790(2018).

    [13] C G E Alfieri, D Waldburger, M Golling et al. High-power sub-300-femtosecond quantum dot semiconductor disk lasers. IEEE Photonics Technol. Lett, 30, 525-528(2018).

    [14] R H Abram, K S Gardner, E Riis et al. Narrow linewidth operation of a tunable optically pumped semiconductor laser. Opt. Express 2004, 12, 5434-5439.

    [15] Xiao-Long WANG, Yong-Gang ZOU, Yong-Qin HAO et al. Characteristics of 850 nm liquid crystal tunable VCSEL with polarization stability and wide tuning range. Chinese Journal of Luminescence.

    [16] C Hessenius, M Lukowski, M Fallahi. High-power tunable two-wavelength generation in a two chip co-linear T-cavity vertical external-cavity surface-emitting laser. Appl. Phys. Lett, 101, 121110(2012).

    [17] M Lukowski, C Hessenius, R Bedford et al. Tunable type II intracavity difference frequency generation at 5.4 mu m in a two chip vertical external cavity surface emitting laser. Opt. Lett, 40, 4174-4177(2015).

    [18] X L Qiu, S S Wang, X J Zhang et al. Dual-wavelength external-cavity surface-emitting laser. Acta Physica Sinica 2019, 68, 114204.

    [19] T Leinonen, S Ranta, A Laakso et al. Dual-wavelength generation by vertical external cavity surface-emitting laser. Opt. Express 2007, 15, 13451-13456.

    [20] A Jasik, A K Sokol, A Broda et al. Dual-wavelength vertical external-cavity surface-emitting laser: strict growth control and scalable design. Applied Physics B-Lasers And Optics 2016, 122, 23.

    [21] M Scheller, J M Yarborough, J V Moloney et al. Room temperature continuous wave milliwatt terahertz source. Opt. Express 2010, 18, 27112-27117.

    [22] L Fan, M Fallahi, J Hader et al. Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser. Appl. Phys. Lett, 90, 181124(2007).

    [23] J Zhang, J Zhang, Z Zhang et al. High-power vertical external-cavity surface-emitting laser emitting switchable wavelengths. Opt. Express 2020, 28, 32612-32619.

    [24] C Mateo, U Brauch, T Schwarzback et al. Enhanced efficiency of AlGaInP disk laser by in-well pumping. Opt. Express, 23, 2472-2486(2015).

    [25] B S Yoo, H H Park, E H Lee. IEEE. periodic gain surface-emitting lasers with low threshold current densities, 03, 254-255.

    [26] J Y Zhang, J W Zhang, Y G Zeng et al. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica 2020, 69, 054204.

    [27] Wei-Shu LIN, Zhi-Ren QIU, Wen-Cheng XU. Femtosecond relaxation of excited carriers in AlGaAs/GaAs multiple quantum wells. Acta Optica Sinica.

    [28] Zhong-Ying XU, Yu-Zhang LI, Jun-Ying XU, Ji-Zong XU, Bao-Zhen ZHENG, Wei-Hua ZHUANG, Wei-Kun GE. Hot carrier relaxation processes in GaAs-GaAlAs multiple quantum well structures. Acta Physica Sinica.

    [29] W S Pelouch, R J Ellingson, P E Powers et al. Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities. Physical Review B, 45, 1450-1453(1992).

    Zhi-Wei LI, Zhuo ZHANG, Jian-Wei ZHANG, Xing ZHANG, Yin-Li ZHOU, Yu-Gang ZENG, Yong-Qiang Ning, Li-Jun WANG. Quantum well modulated optical pumped vertical external cavity surface-emitting laser for dual-wavelength generation[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 951
    Download Citation