• Photonics Research
  • Vol. 10, Issue 4, 947 (2022)
Qiang Zhang1, Zhenwei Xie1、2、*, Peng Shi1, Hui Yang1, Hairong He1, Luping Du1、3、*, and Xiaocong Yuan1、4、*
Author Affiliations
  • 1Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
  • 2e-mail: ayst3_1415926@sina.com
  • 3e-mail: lpdu@szu.edu.cn
  • 4e-mail: xcyuan@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.447311 Cite this Article Set citation alerts
    Qiang Zhang, Zhenwei Xie, Peng Shi, Hui Yang, Hairong He, Luping Du, Xiaocong Yuan. Optical topological lattices of Bloch-type skyrmion and meron topologies[J]. Photonics Research, 2022, 10(4): 947 Copy Citation Text show less
    References

    [1] X. Yin, C. Peng. Manipulating light radiation from a topological perspective. Photon. Res., 8, B25-B38(2020).

    [2] J. Chen, C. Wan, Q. Zhan. Engineering photonic angular momentum with structured light: a review. Adv. Photon., 3, 064001(2021).

    [3] X. Z. Yu, W. Koshibae, Y. Tokunaga, K. Shibata, Y. Taguchi, N. Nagaosa, Y. Tokura. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature, 564, 95-98(2018).

    [4] T. Skyrme. A unified field theory of mesons and baryons. Nucl. Phys., 31, 556-569(1962).

    [5] S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, G. Bartal. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993-996(2018).

    [6] L. Du, A. Yang, A. V. Zayats, X. Yuan. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [7] N. Rivera, I. Kaminer. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys., 2, 538-561(2020).

    [8] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021).

    [9] T. J. Davis, D. Janoschka, P. Dreher, B. Frank, F.-J. Meyer zu Heringdorf, H. Giessen. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 368, eaba6415(2020).

    [10] Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, H. Petek. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616-619(2020).

    [11] S. Tsesses, K. Cohen, E. Ostrovsky, B. Gjonaj, G. Bartal. Spin–orbit interaction of light in plasmonic lattices. Nano Lett., 19, 4010-4016(2019).

    [12] C. C. Li, P. Shi, L. P. Du, X. C. Yuan. Mapping the near-field spin angular momenta in the structured surface plasmon polariton field. Nanoscale, 12, 13674-13679(2020).

    [13] C. Bai, J. Chen, Y. Zhang, D. Zhang, Q. Zhan. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons. Opt. Express, 28, 10320-10328(2020).

    [14] Z.-L. Deng, T. Shi, A. Krasnok, X. Li, A. Alù. Observation of topologically robust localized magnetic plasmon skyrmions. Nat. Commun., 13, 8(2021).

    [15] M. Lin, W. Zhang, C. Liu, L. Du, X. Yuan. Photonic spin skyrmion with dynamic position control. ACS Photon., 8, 2567-2572(2021).

    [16] T. V. Mechelen, Z. Jacob. Photonic Dirac monopoles and skyrmions: spin-1 quantization [invited]. Opt. Mater. Express, 9, 95-111(2019).

    [17] S. Gao, F. C. Speirits, F. Castellucci, S. Franke-Arnold, S. M. Barnett, J. B. Götte. Paraxial skyrmionic beams. Phys. Rev. A, 102, 053513(2020).

    [18] R. Gutiérrez-Cuevas, E. Pisanty. Optical polarization skyrmionic fields in free space. J. Opt., 23, 024004(2021).

    [19] J. Zhu, S. Liu, Y.-S. Zhang. Synthesis and observation of optical skyrmionic structure in free space(2021).

    [20] Y. Shen, E. C. Martínez, C. Rosales-Guzmán. Generation of tunable optical skyrmions on Skyrme-Poincaré sphere(2021).

    [21] W. Lin, Y. Ota, Y. Arakawa, S. Iwamoto. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res., 3, 023055(2021).

    [22] A. Karnieli, S. Tsesses, G. Bartal, A. Arie. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun., 12, 1092(2021).

    [23] Y. Ilin, S. Tsesses, G. Bartal, Y. Sagi. Sub-wavelength spin excitations in ultracold gases created by stimulated Raman transitions. New J. Phys., 22, 093071(2020).

    [24] Y. Shen, Y. Hou, N. Papasimakis, N. I. Zheludev. Supertoroidal light pulses: propagating electromagnetic skyrmions in free space. Nat. Commun., 12, 5891(2021).

    [25] C. Guo, M. Xiao, Y. Guo, L. Yuan, S. Fan. Meron spin textures in momentum space. Phys. Rev. Lett., 124, 106103(2020).

    [26] M. Król, H. Sigurdsson, K. Rechcińska, P. Oliwa, K. Tyszka, W. Bardyszewski, A. Opala, M. Matuszewski, P. Morawiak, R. Mazur, W. Piecek, P. Kula, P. G. Lagoudakis, B. Piętka, J. Szczytko. Observation of second-order meron polarization textures in optical microcavities. Optica, 8, 255-261(2021).

    [27] X. Lei, A. Yang, P. Shi, Z. Xie, L. Du, A. V. Zayats, X. Yuan. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett., 127, 237403(2021).

    [28] Y. Shen. Topological bimeronic beams. Opt. Lett., 46, 3737-3740(2021).

    [29] S. B. Wang, C. T. Chan. Lateral optical force on chiral particles near a surface. Nat. Commun., 5, 3307(2014).

    [30] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 348, 1448-1451(2015).

    [31] T. V. Mechelen, Z. Jacob. Universal spin-momentum locking of evanescent waves. Optica, 3, 118-126(2016).

    [32] P. Shi, L. Du, C. Li, A. Zayats, X. Yuan. Transverse spin dynamics in structured electromagnetic guided waves. Proc. Natl. Acad. Sci. USA, 118, e2018816118(2021).

    [33] A. Fert, N. Reyren, V. Cros. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater., 2, 17031(2017).

    [34] A. N. Bogdanov, C. Panagopoulos. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys., 2, 492-498(2020).

    [35] S.-H. Yang. Spintronics on chiral objects. Appl. Phys. Lett., 116, 120502(2020).

    [36] L. Du, A. Yang, X. Yuan. Ultrasensitive displacement sensing method and device based on local spin characteristics(2021).

    [37] Q. Zhang, Z. Liu, F. Qin, S. J. Zeng, D. Zhang, Z. Gu, X. Liu, J.-J. Xiao. Exploring optical resonances of nanoparticles excited by optical skyrmion lattices. Opt. Express, 27, 7009-7022(2019).

    [38] J. Wätzel, J. Berakdar. Topological light fields for highly non-linear charge quantum dynamics and high harmonic generation. Opt. Express, 28, 19469-19481(2020).

    [39] X.-G. Wang, L. Chotorlishvili, N. Arnold, V. K. Dugaev, I. Maznichenko, J. Barnaś, P. A. Buczek, S. S. P. Parkin, A. Ernst. Plasmonic skyrmion lattice based on the magnetoelectric effect. Phys. Rev. Lett., 125, 227201(2020).

    [40] X. Lei, L. Du, X. Yuan, A. V. Zayats. Optical spin–orbit coupling in the presence of magnetization: photonic skyrmion interaction with magnetic domains. Nanophotonics, 10, 3667-3675(2021).

    [41] T. Meiler, B. Frank, H. Giessen. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: comment. Opt. Express, 28, 33614-33615(2020).

    [42] C. Bai, J. Chen, D. Zhang, Q. Zhan. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: reply. Opt. Express, 28, 33616-33618(2020).

    [43] G. Mi, V. Van. Characteristics of surface plasmon polaritons at a chiral–metal interface. Opt. Lett., 39, 2028-2031(2014).

    [44] H. Ge, X.-Y. Xu, L. Liu, R. Xu, Z.-K. Lin, S.-Y. Yu, M. Bao, J.-H. Jiang, M.-H. Lu, Y.-F. Chen. Observation of acoustic skyrmions. Phys. Rev. Lett., 127, 144502(2021).

    [45] S. Quabis, R. Dorn, G. Leuchs. Generation of a radially polarized doughnut mode of high quality. Appl. Phys. B, 81, 597-600(2005).

    [46] C.-F. Kuo, S.-C. Chu. Dynamic control of the interference pattern of surface plasmon polaritons and its application to particle manipulation. Opt. Express, 26, 19123-19136(2018).

    [47] F. Träger. Springer Handbook of Lasers and Optics(2012).

    [48] I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, A. J. Viitanen. Electromagnetic Waves in Chiral and Bi-Isotropic Media(1994).

    [49] C. Kelly, L. Khosravi Khorashad, N. Gadegaard, L. D. Barron, A. O. Govorov, A. S. Karimullah, M. Kadodwala. Controlling metamaterial transparency with superchiral fields. ACS Photon., 5, 535-543(2018).

    [50] C. F. Bohren. Light scattering by an optically active sphere. Chem. Phys. Lett., 29, 458-462(1974).

    [51] N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol., 8, 899-911(2013).

    [52] P. Shi, L. Du, M. Li, X. Yuan. Symmetry-protected photonic chiral spin textures by spin–orbit coupling. Laser Photon. Rev., 15, 2000554(2021).

    [53] Q. Zhang, Z. Xie, L. Du, P. Shi, X. Yuan. Bloch-type photonic skyrmions in optical chiral multilayers. Phys. Rev. Res., 3, 023109(2021).

    [54] X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, W. Zhang. Terahertz surface plasmonic waves: a review. Adv. Photon., 2, 014001(2020).

    [55] J. S. T. Smalley, F. Vallini, X. Zhang, Y. Fainman. Dynamically tunable and active hyperbolic metamaterials. Adv. Opt. Photon., 10, 354-408(2018).

    [56] G. Hu, Q. Ou, G. Si, Y. Wu, J. Wu, Z. Dai, A. Krasnok, Y. Mazor, Q. Zhang, Q. Bao, C.-W. Qiu, A. Alù. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020).

    [57] X. Lin, Z. Liu, T. Stauber, G. Gómez-Santos, F. Gao, H. Chen, B. Zhang, T. Low. Chiral plasmons with twisted atomic bilayers. Phys. Rev. Lett., 125, 077401(2020).

    [58] G. Hu, C. Zheng, J. Ni, C.-W. Qiu, A. Alù. Enhanced light-matter interactions at photonic magic-angle topological transitions. Appl. Phys. Lett., 118, 211101(2021).

    [59] H. Zhao, X. Chen, C. Ouyang, H. Wang, D. Kong, P. Yang, B. Zhang, C. Wang, G. Wei, T. Nie, W. Zhao, J. Miao, Y. Li, L. Wang, X. Wu. Generation and manipulation of chiral terahertz waves in the three-dimensional topological insulator Bi2Te3. Adv. Photon., 2, 066003(2020).

    [60] M. Jung, R. Gladstone, G. Shvets. Nanopolaritonic second-order topological insulator based on graphene plasmons. Adv. Photon., 2, 046003(2020).

    [61] Q. Yan, Q. Chen, L. Zhang, R. Xi, H. Chen, Y. Yang. Unconventional Weyl exceptional contours in non-Hermitian photonic continua. Photon. Res., 9, 2435-2442(2021).

    [62] H. Zhang, S. Xia, Y. Zhang, Y. Li, D. Song, C. Liu, Z. Zhang. Nonlinear topological valley Hall edge states arising from type-II Dirac cones. Adv. Photon., 3, 056001(2021).

    Qiang Zhang, Zhenwei Xie, Peng Shi, Hui Yang, Hairong He, Luping Du, Xiaocong Yuan. Optical topological lattices of Bloch-type skyrmion and meron topologies[J]. Photonics Research, 2022, 10(4): 947
    Download Citation