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Optical skyrmions, quasiparticles that are characterized by the topologically nontrivial vectorial textures of op-
tical parameters such as the electromagnetic field, Stokes parameters, and spin angular momentum, have aroused
great attention recently. New dimensions for optical information processing, transfer, and storage have become
possible, and developing multiple schemes for manipulating the topological states of skyrmions, thus, is urgent.
Here we propose an approach toward achieving dynamic modulation of skyrmions via changing the field sym-
metry and adding chirality. We demonstrate that field symmetry governs the skyrmionic transformation between
skyrmions and merons, whereas material chirality modulates the twist degree of fields and spins and takes control
of the Néel-type–Bloch-type skyrmionic transition. Remarkably, the enantioselective twist of skyrmions and mer-
ons results from the longitudinal spin arising from the chirality-induced splitting of the hyperboloid in the mo-
mentum space. Our investigation, therefore, acts to enrich the portfolio of optical quasiparticles. The chiral route
to topological state transitions will deepen our understanding of light–matter interaction and pave the way for
chiral sensing, optical tweezers, and topological phase transitions in quantum matter. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.447311

1. INTRODUCTION

The topology of electromagnetic waves is at the focus of boom-
ing research efforts currently [1,2], in particular with respect to
the possibility of emulating and exploiting topological phenom-
ena typically emerged in particle physics and condensed matter,
for example, skyrmions [Fig. 1(a)]. The concept of skyrmions
was proposed by British physicist Tony Skyrme in the 1960s to
account for the topological stability of particles that are char-
acterized by a topological integer number that cannot be
changed by a continuous deformation of the field configuration
[4]. Now it has been introduced to the realm of optics. The very
recent discoveries of optical skyrmions in surface plasmon po-
laritons (SPPs) [5,6], therefore, opened a new chapter in nano-
photonics and endowed a new perspective to control structured
light and light–matter interactions [7,8].

The fascinating vectorial textures of electric field [5] and
spin angular momentum (SAM) [6] immediately triggered peo-
ple’s interest in unveiling their ultrafast dynamic behavior
[9,10]. Subsequent efforts of mapping and manipulating the
plasmonic skyrmions were reported as well [11–15].
Moreover, optical skyrmions have also been constructed by
Dirac monopoles in momentum space [16], Stokes vectors

in free space [17–20] and microcavities [21], pseudospins in
3D nonlinear photonic crystals [22], and Raman transitions
[23] and electric or magnetic field vectors in spatiotemporal
optical pulses [24]. Later, a similar kind of quasiparticles called
merons [Fig. 1(a)], also known as half-skyrmions, was reported
as can be found in the momentum space in photonic crystals
[25], liquid crystal filled microcavities [26], SPPs in an
Archimedean coupling structure [10] and symmetry governed
evanescent optical vortex lattices [27]. Meanwhile, a single free-
space bimeron is for the first time obtained via Stokes vector
fields in well-designed structured vector beams [28]. Note that
skyrmions and bimerons are theoretically isomorphic with the
same integer skyrmion number (�1), but merons are topologi-
cally different with them due to the half-skyrmion number
(�1∕2) [28].

Whereas a number of works have studied Néel-type sky-
rmions in electromagnetic waves, not much is known about
the topological properties of the Bloch-type skyrmions, or the
Bloch-type merons in particular. Here we show that the Bloch-
type skyrmion configuration can be created simply by adding
chirality. Consider the more general case where an evanescent
optical vortex (e-OV) with the topological charge l � 1 results
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in an isolated spin skyrmion [6] (dynamic field skyrmions can
be regarded as created in an l � 0 plasmonic system in the ab-
sence of spin–orbit coupling but in a lattice form [5]): in a non-
chiral system with k2x � k2y � k2r > k2 (evanescent wave), the
wave vector satisfies k2x � k2y − k2z � k2, corresponding to a hy-
perboloid in the k-space [Fig. 1(b)]. The spin textures can be
decomposed into a transverse part and a normal part, which are
determined by ST ∝ k × n [29–31] and Sn ∝ �∇ × klocal�n
(klocal the local wave vector) [6,32], respectively [Figs. 1(a)
and 1(b)]. On the upper and lower sides of a metal-dielectric
interface or near the upper (−ikz) and lower (�ikz) sides of a
dielectric sandwiched between two metals [metal-dielectric-
metal (MDM)], the transverse spin is locked with the energy
flow (spin-momentum locking) and reverses its sign across the
boundary [30,31]. And since the transverse spin is always
orthogonal to the energy flow (Po � klocalℏ), for e-OVs it cor-
responds to the radial spin Sr in the cylindrical coordinate sys-
tem [Fig. 1(a)]. The skyrmions are always Néel type.

However, as circularly polarized light is always an eigenmode
of an isotropic chiral medium, the introduction of chirality
splits the hyperboloid into two: k2x � k2y − k2z� � k2�, with
k� � �n0 � ξ�k0 (ξ the chirality parameter). For a well-con-
fined kr , the normal spin component Sn, thus, is separated into
S− and S� due to the chirality-dependent excess of either the
LCP component or RCP component. As a result, S− � S� is
not normal to the synthetic wave vector anymore in the chiral
medium, and an extra spin component that is perpendicular to
Sn and parallel to the wave vector is generated, i.e., the longi-
tudinal spin SL [Fig. 1(c)]. Most importantly, this longitudinal
spin does not obey the spin-momentum locking rule and will
not change sign as long as in the chiral medium. The sign solely
depends on the handedness of material’s chirality. For e-OVs in
the chiral medium, such non-vanishing longitudinal spin
(along the energy flow; for an evanescent/plasmonic optical

vortex, Po is azimuthally revolving around the vortex singular-
ity) corresponds to Sφ in the cylindrical coordinate system
[Fig. 1(a)] and provides the possibility of the emergence of
Bloch-type skyrmion configuration. Our work is, thus, driven
by this major principle.

On the other hand, the twist evolutions of the local vectors
in skyrmions are chiral geometrically [33–35], and so are they
in the optical field and spin skyrmions in SPPs. Typically, enan-
tioselective responses take place in the interaction between chi-
ral entities (e.g., skyrmions) and chiral materials with opposite
chirality. Our interest of investigating the skyrmion-chiral
material interaction is also driven by this secondary principle.

To this end, we combine the twist degree of freedom in both
material and optical skyrmions. The paper is organized as fol-
lows. We first show in a tri-layered hexagonal plasmonic cou-
pling structure [metal-chiral-metal (MCM)] the degenerated
case (l � 0), the field skyrmion lattices. We show that the
Bloch-type field skyrmion lattice is possible in the structure
center due to the field mode symmetry and chirality-induced
field mode hybridization. We note that such skyrmions and
merons in the real space and spin space of SPPs have never been
reported. We then show in a square plasmonic coupling struc-
ture that Bloch field meron lattices also exist. Finally, we dem-
onstrate that similar scenario occurs for the spin skyrmion and
meron lattices (l � 1). The two scenarios share the same
underlying physics: symmetry governed skyrmion to meron
transformation and chirality-induced twist of fields and spins
in skyrmions and merons. We proved our theory for longi-
tudinal spin induced Bloch-type skyrmion topology via rigor-
ous derivations based on Maxwell’s equations.

In addition to fundamental insights, our studies enlarge the
portfolio of optical skyrmions which so far have demonstrated
promises in deep-subwavelength metrology [6,36], topological
Hall devices [22], precise control over resonant modes in nano-

Fig. 1. Skyrmions/merons and the origin of longitudinal spin due to chirality. (a) Artistic illustrations of Néel- and Bloch-type skyrmions and
merons (figure fashions followed Ref. [3]). (b) For the evanescent wave in a nonchiral system with k2x � k2y � k2r > k2, the transverse spin
ST ∝ k × n, the normal spin component Sn ∝ �∇ × klocal�n, and the wave vector satisfies k2x � k2y � �ikz�2 � k2, corresponding to a hyperboloid
in the k-space. In the case that �kz correspond to evanescent waves in the upper and lower sides of interface, the transverse spin is locked with the
momentum (spin-momentum locking) and reverses its sign across the boundary. However, in a (c) chiral system, as circularly polarized light is always
an eigenmode of an isotropic medium, the introduction of chirality splits the hyperboloid into two (one resides inside and the other outside the
nonchiral hyperboloid): k2x � k2y − k2z� � k2�, corresponding to LCP and RCP waves, respectively. The normal spin component S 0

n, thus, also is
separated into S− and S� due to the symmetry breaking [in this case S 0

n � S− � S� and spin vectors ~a1 · ~b1 � 0, ~a2 · ~b2 � 0 but
�~a1 � ~a2� · �~b1 � ~b2� ≠ 0]. This yields an extra spin component, which is perpendicular to Sn, i.e., the longitudinal spin SL, which is parallel
to the momentum (klocal). Most importantly, this longitudinal spin does not obey the spin-momentum locking rule and will not change sign
across the boundary. Its sign solely depends on the sign of material’s chirality.
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structures [37], high harmonic generations [38], optical tweez-
ers [11], cold atom lattice-alike skyrmion trapping [39], and
magnetic domain detection [40].

2. BLOCH-TYPE ELECTRIC FIELD SKYRMION
LATTICES

It is known that, for the three layer case where the sandwiched
medium is nonchiral and for the single interface case where the
medium filling the lower half space is nonchiral, optical sky-
rmions in electromagnetic fields of SPPs are purely Néel-type
[41,42]. Introducing chirality to such a single interface plas-
monic system leads to hybrid TM-TE mode SPPs. But the field
skyrmions are still Néel-type, or more precisely the so-called
twisted-Néel-type. However, we propose that inside a multilay-
ered structure such as the MCM waveguide, there exists a spe-
cial Néel–Bloch–Néel-type evolution.

We first consider a one-dimensional (1D) MCM structure
where the SPPs propagate along the x axis and exponentially
decay along the z axis [see Fig. 2(a)]. Spin topologies in this
case are degenerated in dynamic field skyrmions due to the ab-
sence of spin–orbit coupling. For the symmetric mode, the dis-
tribution of Ez across the boundaries (z � �d and d � 5 nm)
is symmetric, while Ex is antisymmetric and vanishes in the
center (z � 0). The mode hybridization due to chirality results
in the emergence of Ey component, and it has a symmetric
distribution. More interestingly, for SPPs at a single chiral-
metal interface, Ey reverses its sign for opposite handedness
of chirality [43], which occurs in the same manner for the
MCM case as can be inspected by simply considering just
one of the six SPP waves in Eq. (1). As a consequence, at
z � 0, the electric field vectors take the form �0, �Ey,Ez�
for �ξ. Extending such 1D case to two-dimensional (2D),
therefore, will result in the in-plane electric field components
that are perpendicular to the radial directions at z � 0
[Fig. 2(b)]. In consequence, for a hexagonal lattice, the electric
field skyrmions are Bloch-type.

We further prove this by rigorous deductions. The plas-
monic coupling structure in Fig. 2(a) has been widely applied
both in the excitation and observation of optical skyrmions
[5,9,11] and acoustic skyrmions [44]. The light source
(λ0 � 633 nm) can be six coherent laser beams with tunable
phase relationships. One feasible way to produce such a light
source is using one spatial light modulator to define the phases
of the six beams and then using a wavelength plate consisting of
six half-wavelength plates to adjust the incident polarization
direction of the light field [45,46]. Drude model for the per-
mittivity of gold is adopted [47]. The isotropic chiral material is
modeled using the following constitutive relation [48]:
D � ϵcE� iξ

ffiffiffiffiffiffiffiffiffi
μ0ϵ0

p
H, B � μ0H − iξ

ffiffiffiffiffiffiffiffiffi
μ0ϵ0

p
E, where ϵc is

the permittivity of the chiral material. ξ � �0.15 are adopted
to the same order of magnitude as in Ref. [49] for demonstra-
tion (the available chiral materials can be a polycrystalline film
of chlorophyll a, as demonstrated in Ref. [49]) in this paper.
k� � �

ffiffiffiffiffiffiffiffiffiffiffi
ϵc∕ϵ0

p
� ξ�ω∕c are eigen-wavenumbers correspond-

ing to the right-handed circularly polarized (RCP) and left-
handed circularly polarized (LCP) waves, respectively. Using
Bohren decompositions [50], F� � E� iηH (η �

ffiffiffiffiffiffiffiffiffiffiffi
μ0∕ϵc

p
is the wave impedance of the chiral medium), and the field
equations then satisfy ∇ · F� � 0, ∇ × F� � �k�F�, and
∇2F� � k2�F� � 0, with E � �F� � F−�∕2 and H �
�F� − F−�∕2iη. Therefore, the electric field interference pattern
in the chiral material can be derived as (where the time con-
vention e−iωt is omitted)

Ez �
X3
i�1

h
F�1e−kz��z�d� � F −1e−kz−�z�d �

� F�2ekz��z−d � � F −2ekz−�z−d �
i

× ei
φi�φi�3

2 cos

�
kxix � kyiy �

φi − φi�3

2

�
, (1)

where F�1,2 denote the amplitude at the top and bottom in-
terfaces (for a symmetric MCM structure, F�1 � F�2,

Fig. 2. Calculated Bloch-type electric field skyrmion lattices. (a) Top-viewed hexagonal plasmonic coupling pattern and side-viewed typical
electric field distributions in an MCM structure. (b) Field vectorial orientations for 1D and 2D chiral SPPs (at z � 0), respectively. For a
Bloch-type skyrmion, the in-plane field vectors are oriented as such. (c), (d) Bloch electric field skyrmion lattices (when φ1,2,...,6 � 0) for
ξ < 0 and ξ > 0, respectively. Top panel insets, shown from left to right, are the in-plane component, out-of-plane component, and the skyrmion
number density (μm−2) distribution of the electric field.
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F −1 � F −2), kr the parallel-component of the wave vector, ikz�
the out-of-plane component of the wave vector, maintaining
the relation k2r � �ikz��2 � k2�, and φi the phase of SPPs from
each slit. kxi � kr cos θi, kyi � kr sin θi with θ1 � π∕6,
θ2 � π∕2, and θ3 � 5π∕6. The SPP wavenumber kr is then
evaluated as the eigenvalue solution of the dis-
persion relation. More details on the derivation are given in
Appendix A. Note that in general the electric field is complex
valued in lossy systems. However, for small losses, the imagi-
nary part is negligible and does not affect the real part, and the
skyrmion topology is robust against losses [5,6]. The field equa-
tions in Eq. (1) are more general than the nonchiral field ex-
pression in Ref. [5] as they can reduce into nonchiral ones when
ξ � 0 and phase modulation of each excitation slit is also
considered.

Hence, according to Eq. (1) and Appendix A, at any location
in the x−y plane at z � 0, Eyi∕Exi � −kxi∕kyi � − cot θi
(i � 1, 2, 3). Field vectors obeying this relation orient orthogo-
nally to the radial direction, as illustrated in the rightmost graph
of Fig. 2(b). We then visualize the electric field vectors based on
Eq. (1) in Figs. 2(c) and 2(d), where clear characteristics of the
Bloch-type skyrmions can be seen. When the dielectric is chiral,
mode hybridization for SPPs emerges, resulting in differential
k�, kz�, and F�. Substantial inequality between the RCP and
LCP portion of the SPPs contributes to the opposite twist of
skyrmions for �ξ. The chiral twist (clockwise for ξ < 0 and
counterclockwise for ξ > 0) can be more easily understood
in 1D SPPs at a chiral-metal interface as pointed out in
Ref. [43], where opposite Ey components emerge for ξ with
opposite signs for 1D SPPs propagating along x direction
and decaying toward z direction. That can be considered as
opposite twist along �y compared with 1D nonchiral SPPs.

To further verify the skyrmion analogy, we calculate the sky-
rmion number density (s) of the electric vector structure
s� 1

4πe · �∂e∂x × ∂e
∂y�, where e��cosϕ�θ�sin α�r�, sinϕ�θ�sin α�r�,

cos α�r�� represents the unit vector in the direction of the local
electric field in the plane z � 0. The skyrmion number density
distribution is plotted in the top panel of Figs. 2(c) and 2(d).
Integrating over every lattice site enables us to evaluate the
skyrmion number of the lattice, which is 1 for each individual
skyrmion. Additionally, one can also characterize the swirling
structure of a skyrmion via its topology by calculating the
skyrmion number (N ) as N � 1

4π

RR
e · �∂e∂x × ∂e

∂y�dxdy, which
can eventually be expressed as N � − 1

4π cos α�r�jα�r1�α�0� ×
ϕ�θ�jθ�2π

θ�0 [51], ϕ�θ�jθ�2π
θ�0 ≡ 2π. For a photonic spin structure

with the electric vector changing progressively
from the “up” state [cos α�0� � 1] to the “down” state
[cos α�r1� � −1] at each lattice site, the skyrmion number
can be evaluated as N � 1, regardless of the value of ξ.
Therefore, numerical integration of the skyrmion number den-
sity and analytical quantification of the skyrmion number ac-
cording to the electric vector topology simultaneously confirm
the skyrmion feature of the electric field, no matter how it is
twisted.

3. SKYRMIONIC TRANSFORMATION BETWEEN
FIELD SKYRMION AND MERON LATTICES

Altering the phase relationships among each excitation slit pro-
vides extra degree of freedom in tailoring the optical skyrmion
lattice. This stems directly from the variation of interference
patterns between the three pairs of SPP standing waves. For
example, increasing one of the three pairs of the slits’ phase
by π (e.g., φ2 � φ5 � π) results in the lateral translation of
skyrmion lattice by a unit cell along that direction [13,44].
Note that in this case the skyrmion number of each cell be-
comes −1 immediately due to the core-up (central spin vector
pointing straight up) to core-down transition (central spin vec-
tor pointing straight down).

Here, it is worthwhile to mention that by setting φ2 � π,
meron lattice, that is half-skyrmion lattice, emerges inside a

Fig. 3. Tailoring the skyrmion lattice by phase modulation and the formation of Bloch electric field meron lattice. A novel optical meron lattice,
i.e., half-skyrmion lattice with each unit cell’s skyrmion number equal to either −1∕2 or �1∕2, can be generated by tuning the phase of excitation,
such as setting φ2 � π and the phases of the rest of the boundaries 0. (a) For an MIM structure, Néel-type electric field meron lattices can be found
inside the insulator at anywhere except the center. (b), (c) Bloch electric field meron lattices for ξ < 0 and ξ > 0, respectively. Chirality dependent
twist of meron textures can also be observed here. (d) Manipulation of meron lattices by tuning the phases of the SPPs at the boundaries.
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well-defined rectangular perimeter [see Fig. 3(a)]. Besides, in
this case, merons exist in pairs with alternating skyrmion num-
bers of −1∕2 and �1∕2 distributed over the lattice, namely,
meron pairs. The inset on the left-hand side above Fig. 3(a)
illustrates the in-plane electric field distribution for a meron
lattice in a conventional MDM structure, which is purely
Néel-type, resembling of the dumb-bell like spin texture that
was recently found in the isolated plasmonic spin meron [10].
In this case, cos α�0� � �1 (or −1) as the merons are core-
up (or core-down) and cos α�r1� � 0 as the electric vectors
are in-plane along the perimeter, so N � − 1

4π cos α�r�jα�r1�α�0� ×
ϕ�θ�jθ�2π

θ�0 � �1∕2. Note that the merons shown here with
skyrmion number N � −1∕2 are not antimerons; they are
topologically equivalent to merons with N � �1∕2.

A similar scenario arises after introducing chirality to the
system. As shown in Figs. 3(b) and 3(c), opposite twist degree
of freedom can be exerted by opposite handedness of chirality
to the Bloch-type field merons. Here we take the phase modu-
lation of φ2 � π as an example. In effect, due to the various
orientation angles of each pair of the SPP standing waves
(θ � π∕6, π∕2, and 5π∕6), one can obtain the dynamic con-
trol of skyrmion lattice in three different directions. Moreover,
phase tailoring of more than one of the three slit pairs enables
multiple extra control combinations. For example, if we set the
phases of the SPPs at the boundaries as φ2 � π and
φ1 � φ4 � π, the skyrmion configuration becomes a meron
lattice that is shifted along the direction between boundaries
1 and 4 by L∕2 � λspp∕

ffiffiffi
3

p
, as given in Fig. 3(c) and its inset,

Fig. 3(d). Therefore, such a type of plasmonic structure would
offer us excessive degrees of freedom to manipulate optical sky-
rmions and merons, and thereby facilitate their future applica-
tions such as in quantum information transducing and data
storage.

4. BLOCH SPIN SKYRMION AND MERON
LATTICES

Spin skyrmions in vortex SPPs originate from the transverse
spin and the total angular momentum conservation

[6,32,52]. The spin textures of a single plasmonic vortex at
a chiral-metal surface constitute an isolated twisted-Néel-type
skyrmion. By suitably designing a thin chiral optical waveguide,
a single Bloch spin skyrmion can appear as the preserved wave-
guide eigenmode [53]. This is closely related to the chirality
dependent “longitudinal” spin in contrast to the conventional
transverse spin [30,31], while a plasmonic vortex lattice can
exhibit distinct spin topologies due to the symmetry of the field
[27,52]. Here we go further by demonstrating the chirality-de-
pendent Bloch spin skyrmion/meron lattices, which have yet to
be found in the novel domain of optical skyrmions.

Individual optical spin-skyrmions formed due to the spin–
orbit coupling in the chiral-metal evanescent field can be de-
scribed by Hertz-like vector potentials with a helical phase
term in the cylindrical coordinate �r,φ, z� as f z� � a�J l �krr�·
eilφe−kz�z [53], where a� is a constant, kr and ikz� are the
transverse and longitudinal wave vector components satisfying
k2r − k2z � k2� with k� � �n� ξ�k0 being the eigen wave vec-
tors in chiral medium, and J l is the Bessel function of the first
kind of order l.

We first focus on the hexagonal optical vortex lattice.
Taking the rotational and translational symmetry of an
l � 1 hexagonal vortex lattice into account, the superposition
of each individual Hertz-like vector potential with each lattice
point leads to the spin skyrmion lattice. After deduction of the
electromagnetic field equations, we obtain the corresponding
SAM expression as (more details on the derivation are given
in Appendices B and C):

Sz �
ε

8ω
f�a1�e−kz��z�d � � a2�ekz��z−d ��2

� �a1−k−e−kz−�z�d � � a2−ekz−�z−d ��2gSz0, (2)

where Sz0 represents the nonchiral-metal SAM terms.
Interestingly, Sz0 consists of two subsets of optical vortices with
different wave vector values (K � kr and K � ffiffiffi

3
p

kr ) in the
momentum space [27], respectively:

Fig. 4. Optical Bloch-type spin skyrmion lattice. (a) Unique energy flow distribution is an MCM structure for a hexagonal plasmonic vortex
lattice. (b) Calculated vectorial representation of a Bloch spin skyrmion lattice containing (c), (d) two subsets of Bloch spin skyrmion lattices. Each
sub-spin skyrmion lattice consists of skyrmions with same skyrmion numberN � 1. The insets describe the out-of-plane component of the SAM Sz
in the real space and momentum space.
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Sz0 � cos�krx� � cos�
ffiffiffi
3

p
kry�

� cos

�
1

2
krx �

ffiffiffi
3

p

2
kry

�
� cos

�
1

2
krx −

ffiffiffi
3

p

2
kry

�

� cos

�
3

2
krx �

ffiffiffi
3

p

2
kry

�
� cos

�
3

2
krx −

ffiffiffi
3

p

2
kry

�
: (3)

The energy flow [P � Re�E∗ ×H�∕2] of the vortices can,
therefore, be visualized as given in Fig. 4(a). Such unique en-
ergy flow distribution determines the topology of spin textures,
as shown in Fig. 4(b), which exhibit exactly the Bloch-type sky-
rmionic feature at z � 0. Similarly, the Bloch spin skyrmion
lattice can also be decomposed into two subsets of optical vor-
tex lattices with skyrmionic spin textures shown in Figs. 4(c)
and 4(d). We also show the k-space distribution of the wave
vectors in the insets. Each subset contains a spin skyrmion lat-
tice with each individual skyrmion (also Bloch type) having the
same skyrmion number N � 1 and the same in-plane twist
induced by the material chirality.

On the other hand, when such a hexagonal lattice is trans-
formed to a square lattice, the formation of an optical spin
meron lattice takes place. For such a square plasmonic vortex
lattice in the MCM structure, we also derived the explicit
electromagnetic field equations and finally obtained the
SAM expression as (more details on the derivation are given
in Appendix D):

Sz �
ε

8ω
�cos�krx � kry� � cos�krx − kry��

× f�a1�e−kz��z�d � � a2�ekz��z−d ��2

� �a1−e−kz−�z�d � � a2−ekz−�z−d ��2g: (4)

We present the energy flow in square symmetry in Fig. 5(a),
and the meron spin lattice with alternating “core-up” and “core-
down” spin meron topologies in Fig. 5(b). Along the periph-
eries of each unit square spin meron, the spin vectors are all
parallel to the perimeters. Notably, this marks the Bloch-type
analogy.

5. CONCLUSION

To conclude, we have introduced a new twist degree of free-
dom to both the optical field and spin skyrmion lattices using
material’s chirality. Changing the field symmetry from sixfold

(hexagonal) to fourfold (square) can transform the skyrmion
lattice to meron (half-skyrmion) lattices for the topological tex-
tures of both the electric field vectors and the SAM vectors.
In particular, to the best of our knowledge, the first optical
analog of the Bloch-type skyrmion and meron field and spin
lattices have been presented in this article. We note that
our results and conclusions can also be exploited in THz regime
[14,54] and materials with anisotropy such as hyperbolic
metamaterials [55] and twisted bilayer 2D materials [56,57]
or with magneto-optical effect [40], and in these materials
many more fascinating topological effects would take place
[58–62]. Therefore, our investigation has the potential to un-
lock new perspectives for studies of light–matter interactions in
quantum chiral materials. The new topological features of
electromagnetic waves may also open the door to the use of
topological light for both classical and quantum information
processing and sensing.

APPENDIX A: FIELD SKYRMION LATTICE
IN A METAL-CHIRAL-METAL STRUCTURE

Chiral medium is located at −d ≤ z ≤ �d . For positively
propagating SPPs,

F�x1 �
1

k2r
�−kxkz� � ikyk��F�1eikz��z�d �eiφ1eikxx�ikyy

� 1

k2r
�kxkz� � ikyk��F�2e−ikz��z−d �eiφ1eikxx�ikyy,

F�y1 �
−1

k2r
�ikxk� � kykz��F�1eikz��z�d �eiφ1eikxx�ikyy

� −1

k2r
�ikxk� − kykz��F�2e−ikz��z−d �eiφ1eikxx�ikyy,

F�z1 � F�1eikz��z�d �eiφ1eikxx�ikyy

�F�2e−ikz��z−d �eiφ1eikxx�ikyy : (A1)

For negatively propagating SPPs,

F −x1 �
−1

k2r
�kxkz− � ikyk−�F −1eikz−�z�d �eiφ1eikxx�ikyy

� −1

k2r
�−kxkz− � ikyk−�F −2e−ikz−�z−d �eiφ1eikxx�ikyy,

F −y1 �
−1

k2r
�−ikxk� � kykz−�F −1eikz−�z�d �eiφ1eikxx�ikyy

� −1

k2r
�−ikxk− − kykz−�F −2e−ikz−�z−d �eiφ1eikxx�ikyy,

F −z1 � F −1eikz−�z�d �eiφ1eikxx�ikyy

�F −2e−ikz−�z−d �eiφ1eikxx�ikyy : (A2)

Therefore, the electric field (with kz� replaced by ikz�) can
be written as

Fig. 5. Optical Bloch-type meron lattice. (a) Energy flow distribu-
tion is an MCM structure for a square plasmonic vortex lattice.
(b) Optical spin orientation distribution showing a meron lattice.
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Ex �
1

k2r

X3
i�1

�F�1�kxikz� − kyik��e−kz��z�d �

� F −1�kxikz− � kyik−�e−kz−�z�d �

� F�2�−kxikz� − kyik��ekz��z−d �
� F −2�−kxikz− � kyik−�ekz−�z−d ��

× ei
φi�φi�3

2 sin

�
kxix � kyiy �

φi − φi�3

2

�
,

Ey �
1

k2r

X3
i�1

�F�1�k�kxi � kyikz��e−kz��z�d �

� F −1�−k−kxi � kyikz−�e−kz−�z�d �

� F�2�k�kxi − kyikz��ekz��z−d �

� F −2�−k−kxi − kyikz−�ekz−�z−d ��

× ei
φi�φi�3

2 sin

�
kxix � kyiy �

φi − φi�3

2

�
: (A3)

At z � 0, and for a symmetric MCM structure F�1 �
F�2 � F�, F −1 � F −2 � F −. kxi � kr cos θi and kyi �
kr sin θi. We then have

Ex �
1

k2r

X3
i�1

�−2F��kr sin θik�� � 2F −�kr sin θik−��

× sin�kr cos θix � krr sin θiy�,

Ey �
1

k2r

X3
i�1

�2F��k�kr cos θi� � 2F −�−k−kr cos θi��

× sin�kr cos θix � kr sin θiy�: (A4)

Therefore, Eyi∕Exi � −kxi∕kyi � − cot θi (i � 1, 2, 3).

APPENDIX B: MONOCHROMATIC BESSEL
BEAMS IN CHIRAL MEDIUM AND SYMMETRY
CONSIDERATIONS

In this section, we show in two ways that, in chiral me-
dium, the RCP and LCP eigenmodes of a Bessel vortex
beam possess the same rotational and translational symmetry
simultaneously.

First, we start from Maxwell’s equations: F� field of a vortex
beam in the chiral medium has mode solution as

F� � f��r� exp�i�kz�z − ω0t � lφ��, (B1)

where l represents the topological charge. In the cylindrical co-
ordinate system,

∇ × F� � �k�F�, ∇2F� � k2�F� � 0 (B2)

can be written as

∇2F�r −
2

r2
∂F�φ

∂φ
−
F�r

r2
� k2�F�r � 0, (B3a)

∇2F�φ �
2

r2
∂F�r

∂φ
−
F�φ

r2
� k2�F�φ � 0, (B3b)

∇2F�z � k2�F�z � 0: (B3c)

Substituting Eq. (B1) into Eq. (B3c), we can obtain

1

r
∂
∂r

�
r
∂f �z

∂r

�
�

�
k2� − k2z� −

l 2

r2

�
f �z � 0, (B4)

which is a Bessel function with general solution

f �z � a�J l �krr�eilφe−iω0t eikz�z , (B5)

where k2r � k2� − k2z�, a� is arbitrary constant, and J l is the
l th-order Bessel function of the first kind.

Secondly, on the other hand, we construct Bessel beams in
chiral medium from the superposition of plane waves with the
same frequency ω � ω0. Consider such a beam propagates
along the z axis. In the paraxial approximation, all the plane
waves’ vectors k are distributed within a cone of polar angle
θ0 (θ0 ≪ 1), and each wave vector carries an accompanying
azimuthal phase difference lϕ (note ϕ is in the k-space and
l is the topological charge), as depicted in Fig. 6. In achiral
medium (air), the real-space wave function can be obtained
as a Fourier-type integral:

ψ�r, t� ∝
Z

2π

0

ei�kjjz�k⊥ cos�ϕ�x�k⊥ sin�ϕ�y�lϕ−ω0t �dϕ

∝ J l �k⊥r� exp�ikjjz � ilφ − iω0t�, (B6)

where kz � kjj � k0 cos θ0, k⊥ � k0 sin θ0, and k0 � ω0∕c.
Conversely, we can construct the Bessel beam in chiral

medium by considering the aforementioned Bessel beam trans-
mitted normally from air to the chiral medium. Two eigenm-
odes (RCP and LCP) are supported in the chiral medium, and
they both obey Snell’s law sin θ0 � n� sin θ� � n− sin θ−,
where n� � n0 � ξ, n0 is the medium refractive index, and
ξ is the chirality parameter. Thus, for each plane wave
in the k-space, k0 sin θ0 � k0n� sin θ� � k0n− sin θ− and

Fig. 6. Plane wave spectra in air (left) and a chiral medium (right).
The colorful inset depicts the phase-intensity distributions of real-
space wave functions for the monochromatic Bessel beam with
l � 1, where the brightness is proportional to the intensity, while
the color indicates the phase.
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k0 sin θ0 � k� sin θ� � k− sin θ−. We then know that
k⊥ � k�⊥ � k−⊥ for each plane wave with preserved azimuthal
phase difference lϕ. Therefore, the real-space wave function
can be obtained as a Fourier-type integral:

ψ�r, t� � a�

Z
2π

0

ei�k
�
jj z�k⊥ cos�ϕ�x�k⊥ sin�ϕ�y�lϕ−ω0t �dϕ

� a−

Z
2π

0

ei�k
−
jjz�k⊥ cos�ϕ�x�k⊥ sin�ϕ�y�lϕ−ω0t�dϕ

� �a�J l �k⊥r� exp�ik�jj z � ilφ − iω0t�
� a−J l �k⊥r� exp�ik−jjz � ilφ − iω0t��, (B7)

where a� represents the amplitude constants, and k�jj � k�
and k−jj � k− in the paraxial approximation.

As a result, deduction based on Maxwell’s equations and
construction from the Fourier integral of superposition of plane
waves in the k-space lead to the same Bessel beam solution in
the chiral medium. This confirms the correctness of both ap-
proaches. The problem-solving logic in the second approach
tells us that the RCP and LCP eigenmodes should share the
same rotational and translational symmetry simultaneously.
This paves the way of our next deductions of spin sky-
rmion/meron lattices.

APPENDIX C: METAL-CHIRAL-METAL SPIN
SKYRMION LATTICE OF BLOCH-TYPE

Let us first start from a simpler case, i.e., vortex SPPs at a chiral-
metal single interface. For an evanescent wave decaying expo-
nentially along the z direction on the surface of a chiral
medium, F�z can be expressed as F�z � Ψ�e−k�z z ; thus,

∇2F�z � k2�F�z � 0 (C1)

can be written as

∂2Ψ�
XY

∂x2
� ∂2Ψ�

XY

∂y2
� k2rΨ�

XY � 0, (C2)

where k2r � k2� � k2�z . Assuming a hexagonal periodicity of
the EM field, Ψ�

XY should fulfill a translational symmetry as
expressed by

Ψ�
XY �x � Lx , y� � Ψ�

XY �x, y�,
Ψ�

XY �x, y � Ly� � Ψ�
XY �x, y�, (C3)

where Lx and Ly have a scaling factor of
ffiffiffi
3

p
. On the other

hand, one can find that, for the generated optical lattice,
Lx � 2λr and Ly � 2∕

ffiffiffi
3

p
λr , where λr � 2π∕kr . Besides the

translational symmetry, the optical lattice also possesses certain
degrees of rotational symmetry, which is related to the topologi-
cal charge (l ) of the vortex:

Rz�α�Ψ�
XY �Rz�−α�~r� � eilαΨ�

XY �~r�: (C4)

By taking into account three special cases for α in the rotation
matrix with respect to the z axis as α � −π∕3, π∕3, and π, and
assuming l � 1, one can finally obtain [θn � nπ∕N ,
en � �cos θn, sin θn� with N � 3 for hexagonal and N � 2
for square lattice]

F�z � a�e−k�z z
X2N
n�1

eilθn eikr r·en � a�e−k�z z

×
��

1ffiffiffi
3

p � i
�
sin

�
1

2
krx �

ffiffiffi
3

p

2
kry

�
�

�
1ffiffiffi
3

p − i
�
sin

�
1

2
krx −

ffiffiffi
3

p

2
kry

�
� 2ffiffiffi

3
p sin�krx�

�

� a�e−k�z z
2ffiffiffi
3

p
�
ei

π
3 sin

�
1

2
krx �

ffiffiffi
3

p

2
kry

�
� e−i

π
3 sin

�
1

2
krx −

ffiffiffi
3

p

2
kry

�
� sin�krx�

�
,

F�x � a1�e−kz��z�d � 1
kr

�
k�

�
ei

π
3 cos

�
1

2
krx �

ffiffiffi
3

p

2
kry

�
− e−i

π
3 cos

�
1

2
krx −

ffiffiffi
3

p

2
kry
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−
1ffiffiffi
3

p kz�

�
ei

π
3 cos

�
1

2
krx �

ffiffiffi
3

p

2
kry
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� e−i

π
3 cos

�
1

2
krx −

ffiffiffi
3
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2
kry
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� 2 cos�krx�
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� a2�ekz��z−d �
1
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�
k�

�
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π
3 cos

�
1

2
krx �

ffiffiffi
3

p

2
kry

�
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π
3 cos
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1

2
krx −
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3
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2
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π
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2
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F −x � a1−e−kz−�z�d � 1
kr

�
−k−

�
ei

π
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1

2
krx �

ffiffiffi
3
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2
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, (C5)

Sx �
ε

8ωkr
×
�
�a21�kz�e−2kz��z�d � � a21−kz−e

−2kz−�z�d � − a22�kz�e
2kz��z−d � − a22−kz−e

2kz−�z−d ��Sx0

−
1ffiffiffi
3

p f�a1�e−kz��z�d � � a2�ekz��z−d ��2k� − �a21−k−e−kz−�z�d � � a2−ekz−�z−d ��2k−gSy0
�
,

Sy �
ε

8ωkr
×
�
f�a1�e−kz��z�d � � a2�ekz��z−d ��2k� − �a21−k−e−kz−�z�d � � a2−ekz−�z−d��2k−gSx0

� 1ffiffiffi
3
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, (C6)
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(C7)
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APPENDIX D: METAL-CHIRAL-METAL SPIN
MERON LATTICE OF BLOCH TYPE

Setting N � 2, we get the field expressions for an MCM spin
lattice:

F�x � −
1

kr
fa1�e−kz��z�d ��ikz� cos�krx� � k� cos�kry��

� a2�ekz��z−d ��−ikz� cos�krx� � k� cos�kry��g,

F −x � −
1

kr
fa1−e−kz−�z�d ��ikz− cos�krx� − k− cos�kry��

� a2−ekz−�z−d ��−ikz− cos�krx� − k− cos�kry��g,

F�y � −
1

kr
fa1�e−kz��z�d ��ik� cos�krx� − kz� cos�kry��

� a2�ekz��z−d ��ik� cos�krx� � kz� cos�kry��g,

F −y � −
1

kr
fa1−e−kz−�z�d ��−ik− cos�krx� − kz− cos�kry��

� a2−ekz−�z−d ��−ik− cos�krx� � kz− cos�kry��g,

F�z � �a1�e−kz��z�d � � a2�ekz��z−d�� × �i sin�krx� − sin�kry��,
F −z � �a1−e−kz−�z�d � � a2−ekz−�z−d �� × �i sin�krx� − sin�kry��:

(D1)

Therefore, the SAM for the MCM spin meron lattice can be
written as

Sx,y �
ε

8ωkr
ffsin�krx � kry� × �a21�kz�e−2kz��z�d �

� a21−kz−e
−2kz−�z�d � − a22�kz�e

2kz��z−d � − a22−kz−e
2kz−�z−d ��

	 f�a1�e−kz��z�d � � a2�ekz��z−d ��2k�
− �a21−k−e−kz−�z�d � � a2−ekz−�z−d ��2k−gg � sin�krx − kry�
× f��a21�kz�e−2kz��z�d� � a21−kz−e

−2kz−�z�d �

− a22�kz�e
2kz��z−d � − a22−kz−e

2kz−�z−d ��
� f�a1�e−kz��z�d � � a2�ekz��z−d ��2k�
− �a21−k−e−kz−�z�d � � a2−ekz−�z−d ��2k−ggg, (D2)

where the super- and subscripts in the signs	 or� of equation
correspond to Sx and Sy, respectively.
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