• Photonics Research
  • Vol. 11, Issue 10, 1667 (2023)
Min Zhou1、2、†, Yukun Zhao1、2、4、†,*, Xiushuo Gu1, Qianyi Zhang1, Jianya Zhang3, Min Jiang1、2, and Shulong Lu1、2、5、*
Author Affiliations
  • 1Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
  • 2School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
  • 3Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
  • 4e-mail: ykzhao2017@sinano.ac.cn
  • 5e-mail: sllu2008@sinano.ac.cn
  • show less
    DOI: 10.1364/PRJ.487936 Cite this Article Set citation alerts
    Min Zhou, Yukun Zhao, Xiushuo Gu, Qianyi Zhang, Jianya Zhang, Min Jiang, Shulong Lu. Light-stimulated low-power artificial synapse based on a single GaN nanowire for neuromorphic computing[J]. Photonics Research, 2023, 11(10): 1667 Copy Citation Text show less
    References

    [1] W. S. Wang, L. Q. Zhu. Recent advances in neuromorphic transistors for artificial perception applications focus review. Sci. Technol. Adv. Mater., 24, 10-41(2023).

    [2] G. Hu, H. An, J. Xi, J. Lu, Q. Hua, Z. Peng. A ZnO micro/nanowire-based photonic synapse with piezo-phototronic modulation. Nano Energy, 89, 106282(2021).

    [3] R. Zhu, H. Hang, S. Hu, Y. Wang, Z. Mei. Amorphous-Ga2O3 optoelectronic synapses with ultra-low energy consumption. Adv. Electron. Mater., 8, 2100741(2022).

    [4] Z. Wang, L. Wang, M. Nagai, L. Xie, M. Yi, W. Huang. Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv. Electron. Mater., 3, 1600510(2017).

    [5] M. Zhou, Y. Zhao, X. Gu, Q. Zhang, J. Zhang, M. Jiang, S. Lu. Realize low-power artificial photonic synapse based on (Al,Ga)N nanowire/graphene heterojunction for neuromorphic computing. APL Photonics, 8, 076107(2023).

    [6] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, W. Lu. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett., 10, 1297-1301(2010).

    [7] R. Yu, E. Li, X. Wu, Y. Yan, W. He, L. He, J. Chen, H. Chen, T. Guo. Electret-based organic synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces, 12, 15446-15455(2020).

    [8] J. Liu, Z. Yang, Z. Gong, Z. Shen, Y. Ye, B. Yang, Y. Qiu, B. Ye, L. Xu, T. Guo, S. Xu. Weak light-stimulated synaptic hybrid phototransistors based on islandlike perovskite films prepared by spin coating. ACS Appl. Mater. Interfaces, 13, 13362-13371(2021).

    [9] Y. Nie, P. Xie, X. Chen, C. Jin, W. Liu, X. Shi, Y. Xu, Y. Peng, J. C. Ho, J. Sun, J. Yang. Hybrid C8-BTBT/InGaAs nanowire heterojunction for artificial photosynaptic transistors. J. Semicond., 43, 112201(2022).

    [10] Y. Sun, Y. Ding, D. Xie. Mixed-dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications. Adv. Funct. Mater., 31, 2105625(2021).

    [11] Y. Mo, B. Luo, H. Dong, B. Hou. Light-stimulated artificial synapses based on Si-doped GaN thin films. J. Mater. Chem. C, 10, 13099-13106(2022).

    [12] S. Shrivastava, L. B. Keong, S. Pratik, A. S. S. Lin, T. Y. Tseng. Fully photon controlled synaptic memristor for neuro-inspired computing. Adv. Electron. Mater., 9, 2201093(2023).

    [13] X. Chen, B. Chen, B. Jiang, T. Gao, G. Shang, S. T. Han, C. C. Kuo, V. A. L. Roy, Y. Zhou. Nanowires for UV–vis–IR optoelectronic synaptic devices. Adv. Funct. Mater., 30, 2208807(2022).

    [14] Y. Yang, Y. He, S. Nie, Y. Shi, Q. Wan. Light stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devices. IEEE Electron Device Lett., 39, 897-900(2018).

    [15] R. Ji, G. Feng, C. Jiang, B. Tian, C. Luo, H. Lin, X. Tang, H. Peng, C. G. Duan. Fully light-modulated organic artificial synapse with the assistance of ferroelectric polarization. Adv. Electron. Mater., 8, 2101402(2022).

    [16] J. Zhou, J. Dai, S. Weng. Effect of adjacent lateral inhibition on light and electric-stimulated synaptic transistors. IEEE Electron Device Lett., 43, 573-575(2022).

    [17] M. Lee, W. Lee, S. Choi, J. W. Jo, J. Kim, S. K. Park, Y. H. Kim. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater., 29, 1700951(2017).

    [18] M. T. Hirsch, J. A. Wolk, W. Walukiewicz, E. E. Haller. Persistent photoconductivity in n-type GaN. Appl. Phys. Lett., 71, 1098-1100(1997).

    [19] M. Wohlfahrt, M. J. Uren, F. Kaess, O. Laboutin, H. Hirshy, M. Kuball. UV-induced change in channel conductivity in AlGaN/GaN high electron mobility transistors to measure doping. Appl. Phys. Lett., 118, 163501(2021).

    [20] H. Xie, Z. Liu, W. Hu, Y. Gao, H. T. Tan, K. E. Lee, Y.-X. Guo, J. Zhang, Y. Hao, G. I. Ng. AlN/GaN MISHEMTs on Si with in-situ SiN as a gate dielectric for power amplifiers in mobile SoCs. Appl. Phys. Express, 15, 016503(2022).

    [21] V. K. Sangwan, M. C. Hersam. Neuromorphic nanoelectronic materials. Nat. Nanotechnol., 15, 517-528(2020).

    [22] S. Zhang, X. R. Zhang, F. Ren, Y. Yin, T. Feng, W. R. Song, G. D. Wang, M. Liang, J. L. Xu, J. W. Wang, J. X. Wang, J. M. Li, X. Y. Yi, Z. Q. Liu. High responsivity GaN nanowire UVA photodetector synthesized by hydride vapor phase epitaxy. J. Appl. Phys., 128, 155705(2020).

    [23] L. Y. Zhang, X. Q. Xiu, Y. W. Li, Y. X. Zhu, X. M. Hua, Z. L. Xie, T. Tao, B. Liu, P. Chen, R. Zhang, Y. D. Zheng. Solar-blind ultraviolet photodetector based on vertically aligned single-crystalline β-Ga2O3 nanowire arrays. Nanophotonics, 9, 4497-4503(2020).

    [24] Y. K. Zhao, Z. W. Xing, L. Geelhaar, J. Y. Zhang, W. X. Yang, T. Auzelle, Y. Y. Wu, L. F. Bian, S. L. Lu. Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance. ACS Appl. Nano Mater., 3, 9943-9950(2020).

    [25] B. Tian, C. M. Lieber. Nanowired bioelectric interfaces. Chem. Rev., 119, 9136-9152(2019).

    [26] S. Xin, Y. Chang, R. Zhou, H. Cong, L. Zheng, Y. Wang, Y. Qin, P. Xu, X. Liu, F. Wang. Ultraviolet-driven metal oxide semiconductor synapses with improved long-term potentiation. J. Mater. Chem. C, 11, 722-729(2023).

    [27] D. Sarkar, J. Tao, W. Wang, Q. Lin, M. Yeung, C. Ren, R. Kapadia. Mimicking biological synaptic functionality with an indium phosphide synaptic device on silicon for scalable neuromorphic computing. ACS Nano, 12, 1656-1663(2018).

    [28] C. Shen, X. Gao, C. Chen, S. Ren, J. L. Xu, Y. D. Xia, S. D. Wang. ZnO nanowire optoelectronic synapse for neuromorphic computing. Nanotechnology, 33, 065205(2022).

    [29] C. Ebenhoch, L. Schmidt-Mende. TiO2 nanowire array memristive devices emulating functionalities of biological synapses. Adv. Electron. Mater., 7, 2000950(2021).

    [30] C. Zha, X. Yan, X. Yuan, Y. Zhang, X. Zhang. An artificial optoelectronic synapse based on an InAs nanowire phototransistor with negative photoresponse. Opt. Quantum Electron., 53, 587(2021).

    [31] Q. Hua, J. Sun, H. Liu, X. Cui, K. Ji, W. Guo, C. Pan, W. Hu, Z. L. Wang. Flexible GaN microwire-based piezotronic sensory memory device. Nano Energy, 78, 105312(2020).

    [32] M. Jiang, Y. Zhao, L. Bian, W. Yang, J. Zhang, Y. Wu, M. Zhou, S. Lu, H. Qin. Self-powered photoelectrochemical (Al,Ga)N photodetector with an ultrahigh ultraviolet/visible reject ratio and a quasi-invisible functionality for 360° omnidirectional detection. ACS Photonics, 8, 3282-3290(2021).

    [33] J. Zhang, B. Jiao, J. Dai, D. Wu, Z. Wu, L. Bian, Y. Zhao, W. Yang, M. Jiang, S. Lu. Enhance the responsivity and response speed of self-powered ultraviolet photodetector by GaN/CsPbBr3 core-shell nanowire heterojunction and hydrogel. Nano Energy, 100, 107437(2022).

    [34] M. Zhou, Y. Zhao, W. Yang, J. Zhang, M. Jiang, Y. Wu, Z. Xu, S. Lu. Detached vertical (Al,Ga)N nanowires to realize the flexible ultraviolet photodetector with high ultraviolet/visible reject ratio and detectivity. Energy Technol., 10, 2200885(2022).

    [35] M. Jiang, J. Zhang, W. Yang, D. Wu, Y. Zhao, Y. Wu, M. Zhou, S. Lu. Flexible self-powered photoelectrochemical photodetector with ultrahigh detectivity, ultraviolet/visible reject ratio, stability, and a quasi-invisible functionality based on lift-off vertical (Al,Ga)N nanowires. Adv. Mater. Interfaces, 9, 2200028(2022).

    [36] M. Zhou, H. B. Qiu, T. He, J. Y. Zhang, W. X. Yang, S. L. Lu, L. F. Bian, Y. K. Zhao. UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate. Phys. Status Solidi A, 217, 2000061(2020).

    [37] R. Songmuang, O. Landré, B. Daudin. From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer. Appl. Phys. Lett., 91, 251902(2007).

    [38] T. Auzelle, B. Haas, A. Minj, C. Bougerol, J. L. Rouvière, A. Cros, J. Colchero, B. Daudin. The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires. J. Appl. Phys., 117, 245303(2015).

    [39] T. Ahmed, M. Tahir, M. X. Low, Y. Ren, S. A. Tawfik, E. L. H. Mayes, S. Kuriakose, S. Nawaz, M. J. S. Spencer, H. Chen, M. Bhaskaran, S. Sriram, S. Walia. Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater., 33, 2004207(2021).

    [40] J. Q. Yang, R. Wang, Y. Ren, J. Y. Mao, Z. P. Wang, Y. Zhou, S. T. Han. Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater., 32, 2003610(2020).

    [41] Y. Wang, M. Cao, J. Bian, Q. Li, J. Su. Flexible ZnO nanosheet-based artificial synapses prepared by low-temperature process for high recognition accuracy neuromorphic computing. Adv. Funct. Mater., 32, 2209907(2022).

    [42] J. Jiang, W. Hu, D. Xie, J. Yang, J. He, Y. Gao, Q. Wan. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale, 11, 1360-1369(2019).

    [43] H. J. Quah, K. Y. Cheong. Effects of post-deposition annealing ambient on chemical, structural, and electrical properties of RF magnetron sputtered Y2O3 gate on gallium nitride. J. Alloys Compd., 575, 382-392(2013).

    [44] Y. H. Ji, Q. Gao, A. P. Huang, M. Q. Yang, Y. Q. Liu, X. L. Geng, J. J. Zhang, R. Z. Wang, M. Wang, Z. S. Xiao, P. K. Chu. GaOx@GaN nanowire arrays on flexible graphite paper with tunable persistent photoconductivity. ACS Appl. Mater. Interfaces, 13, 41916-41925(2021).

    [45] Z. Guo, J. Liu, X. Han, F. Ma, D. Rong, J. Du, Y. Yang, T. Wang, G. Li, Y. Huang, J. Xing. High-performance artificial synapse based on CVD-grown WSe2 flakes with intrinsic defects. ACS Appl. Mater. Interfaces, 15, 19152-19162(2023).

    [46] J. Nobre, A. Safade, A. Urbano, E. Laureto. A synaptic device based on the optoelectronic properties of ZnO thin film transistors. Appl. Phys. A, 129, 203(2023).

    [47] S. Zhang, L. Yang, C. Jiang, L. Sun, K. Guo, H. Han, W. Xu. Digitally aligned ZnO nanowire array based synaptic transistors with intrinsically controlled plasticity for short-term computation and long-term memory. Nanoscale, 13, 19190-19199(2021).

    [48] A. Destexhe, E. Marder. Plasticity in single neuron and circuit computations. Nature, 431, 789-795(2004).

    [49] R. S. Zucker, W. G. Regehr. Short-term synaptic plasticity. Annu. Rev. Physiol., 64, 355-405(2002).

    [50] C. S. Yang, D. S. Shang, Y. S. Chai, L. Q. Yan, B. G. Shen, Y. Sun. Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells. Phys. Chem. Chem. Phys., 19, 4190-4198(2017).

    [51] A. C. K. Kelly, A. Foster, W. G. Regehr. Interaction of postsynaptic receptor saturation with presynaptic mechanisms produces a reliable synapse. Neuron, 35, 1115-1126(2002).

    [52] C. Zha, W. Luo, X. Zhang, X. Yan, X. Ren. Low-consumption synaptic devices based on gate-all-around InAs nanowire field-effect transistors. Nanoscale Res. Lett., 17, 101(2022).

    [53] H. Qi, Y. Wu. Synaptic plasticity of TiO2 nanowire transistor. Microelectron. Int., 37, 125-130(2020).

    [54] P. Xie, Y. Huang, W. Wang, Y. Meng, Z. Lai, F. Wang, S. Yip, X. Bu, W. Wang, D. Li, J. Sun, J. C. Ho. Ferroelectric P(VDF-TrFE) wrapped InGaAs nanowires for ultralow-power artificial synapses. Nano Energy, 91, 106654(2022).

    [55] X. Li, B. Yu, B. Wang, R. Bi, H. Li, K. Tu, G. Chen, Z. Li, R. Huang, M. Li. Complementary photo-synapses based on light-stimulated porphyrin-coated silicon nanowires field-effect transistors (LPSNFET). Small, 17, 2101434(2021).

    [56] Q. Hua, X. Cui, H. Liu, C. Pan, W. Hu, Z. L. Wang. Piezotronic synapse based on a single GaN microwire for artificial sensory systems. Nano Lett., 20, 3761-3768(2020).

    [57] D. Zheng, H. Fang, M. Long, F. Wu, P. Wang, F. Gong, X. Wu, J. C. Ho, L. Liao, W. Hu. High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition. ACS Nano, 12, 7239-7245(2018).

    [58] J. H. F. Nobre, A. S. Safade, A. Urbano, E. Laureto. A synaptic device based on the optoelectronic properties of ZnO thin film transistors. Appl. Phys. A, 129, 203(2023).

    [59] K. He, Y. Liu, J. Yu, X. Guo, M. Wang, L. Zhang, C. Wan, T. Wang, C. Zhou, X. Chen. Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano, 16, 9691-9700(2022).

    [60] P. Y. Chen, X. Peng, S. Yu. NeuroSim +: an integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures. 63rd IEEE Annual International Electron Devices Meeting (IEDM), 6.1.1-6.1.4(2017).

    [61] S. A. Khan, M. K. Rahmani, M. U. Khan, J. Kim, J. Bae, M. H. Kang. Multistate resistive switching with self-rectifying behavior and synaptic characteristics in a solution-processed ZnO/PTAA bilayer memristor. J. Electrochem. Soc., 169, 063517(2022).

    [62] C. Han, X. Han, J. Han, M. He, S. Peng, C. Zhang, X. Liu, J. Gou, J. Wang. Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv. Funct. Mater., 32, 2113053(2022).

    [63] Y. Sun, M. Li, Y. Ding, H. Wang, H. Wang, Z. Chen, D. Xie. Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption. Infomat, 4, e12317(2022).

    Min Zhou, Yukun Zhao, Xiushuo Gu, Qianyi Zhang, Jianya Zhang, Min Jiang, Shulong Lu. Light-stimulated low-power artificial synapse based on a single GaN nanowire for neuromorphic computing[J]. Photonics Research, 2023, 11(10): 1667
    Download Citation