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The fast development of the brain-inspired neuromorphic computing system has ignited an urgent demand for
artificial synapses with low power consumption. In this work, it is the first time a light-stimulated low-power
synaptic device based on a single GaN nanowire has been demonstrated successfully. In such an artificial synaptic
device, the incident light, the electrodes, and the light-generated carriers play the roles of action potential,
presynaptic/postsynaptic membrane, and neurotransmitter in a biological synapse, respectively. Compared to
those of other synaptic devices based on GaN materials, the energy consumption of the single-GaN-nanowire
synaptic device can be reduced by more than 92%, reaching only 2.72 × 10−12 J. It is proposed that the oxygen
element can contribute to the synaptic characteristics by taking the place of the nitrogen site. Moreover, it is found
that the dynamic “learning−forgetting” performance of the artificial synapse can resemble the behavior of the
human brain, where less time is required to relearn the missing information previously memorized and the memo-
ries can be strengthened after relearning. Based on the experimental conductance for long-term potentiation
(LTP) and long-term depression (LTD), the simulated network can achieve a high recognition rate up to 90%
after only three training epochs. Such few training times can reduce the energy consumption in the supervised
learning processes substantially. Therefore, this work paves an effective way for developing single-nanowire-based
synapses in the fields of artificial intelligence systems and neuromorphic computing technology requiring low-
power consumption. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.487936

1. INTRODUCTION

Currently, neural networks play an important role in deep
learning by processing text, audio, and video data sequences
[1]. Due to the separate processor and memory units, von
Neumann architecture-based computing systems are encoun-
tering fundamental physical limitations of energy consumption
and access speed [2,3], which makes it difficult to meet the
requirements of the rapid development of artificial intelligence,
big data, and Internet of Things. In general, the human brain
has one of the most sophisticated structures, which can process
and store large quantities of data with high speed and low
power consumption simultaneously [4,5]. Meanwhile, the
emerging neuromorphic computing has the advantages of
high efficiency, low power consumption, and flexible adaptive

ability, which can meet the needs of simulating neural brain
systems [6,7]. Furthermore, the light-stimulated synaptic pho-
totransistor has many outstanding characteristics, such as high
anti-interference, high bandwidth, low cross talk, and low
power consumption [8–12]. Therefore, light-stimulated neuro-
morphic devices with low power are essential and quite neces-
sary for the development of neuromorphic computing.

In the human brain, almost ∼1011–1015 neuron-synaptic
junction units exist, which allow the brain to perform complex
neural activities [12,13]. When the input is an optical signal,
traditional synaptic devices need additional sensors for photo-
electric conversion [14]. Thus, light-stimulated synapse devices
are of great significance in simulating the human visual system,
which receives and processes ∼80% external information [15].
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It is common for light-stimulated synaptic devices to contain
active materials that are stimulus-history dependent, such as
persistent photoconductivity (PPC) [11,16,17]. The varied
conductivity or current variation can be utilized to emulate the
functions of biological synapses under stimuli [11,16,17].
GaN-based materials with direct bandgaps have the great
potential in the neuromorphic field for the following reasons.
First, stable PPC effect can be observed in GaN materials at
room temperature, paving the way for light-stimulated synaptic
devices to be constructed [18,19]. Second, GaN-based materi-
als are compatible with the present semiconductor technology,
allowing for the large-scale manufacture of optoelectronic
synaptic arrays [20]. Finally, GaN-based materials offer great
potential for on-chip integration of optoelectronic neural mor-
phological devices and light sources [11]. Hence, it is very
promising to prepare GaN-based photonic synaptic devices.

In addition, one-dimensional (1D) materials, such as nano-
wires (NWs), have the analogous topology to tubular axons,
which greatly influences the processing of data in biological sys-
tems [21]. Combined with the excellent characteristics of a
large surface-to-volume ratio, efficient charge carrier transport,
and effective light response to specific wave bands, these 1D
materials can regulate synaptic activities more flexibly with a
low power [22–26]. Although neuromorphic systems based on
GaN-based NWs pave a new way to mimic the capability of
human brain [27–30], GaN synaptic devices are normally
based on thin films [two-dimensional (2D) material] [11,31].
Furthermore, they are mainly used for electrical synapses, not
light-stimulated synapses [11,31]. In our previous work, we
fabricated GaN-based NWs and utilized them in photodetec-
tors successfully [32–35]. However, very few works have been
reported on utilizing the single GaN NW in light-stimulated
artificial synapses, not to mention realizing the performance of
low power consumption.

In this work, we reported a light-stimulated synaptic device
based on single GaN NW successfully. This artificial synapse is
capable of emulating multiple functionalities of biological synap-
ses, including the spike-duration dependence, light-intensity
dependence, transition from short-term memory (STM) to
long-term memory (LTM), and the learning behavior. The
energy consumption of such synaptic device is demonstrated
to be very low, reaching only 2.72 × 10−12 J. Apart from the ex-
periments, the underlying mechanisms of the synaptic device have
also been studied. In order to verify the learning ability of NW
synaptic devices, an artificial neural network (ANN) for mimick-
ing bio-vision has been established and demonstrated.

2. EXPERIMENTAL AND NUMERICAL
METHODOLOGIES

A. Preparation Procedure of GaN NWs
The GaN NWs [Fig. 1(a)] were grown on the n-type Si (111)
substrates by molecular beam epitaxy (MBE, Vecco G20). To
eliminate native oxides in the growth chamber before epitaxial
growth, the Si substrates were heated to 900°C for 15 min.
The N atoms were supplied by the N plasma cell, while the
Ga atoms were generated by the Ga effusion cell. First,
GaN deposited on the Si surface forms into islands through
the Stranski–Krastanow growth mode [36–38]. Due to strain

minimization, these islands are expected to be preferential sites.
In other words, the deposited GaN initially forms into islands,
which act as a material collector and a seed for the NW growth
[36–38]. After that, the GaN section was grown with a nominal
Ga flux of 3.7 × 10−8 Torr for 300 min. During the epitaxial
process, the plasma power and nitrogen flow rate were kept at
450 W and 4.8 sccm, respectively.

B. Fabrication of Synaptic Device
As shown in Fig. 1(b), the as-grown NW based on Si I substrate
was transferred onto the top surface of the 280 nm SiO2 layer
under a stereoscopic microscope, which was on a foreign Si II
substrate. Several cross markings were fabricated by the photo-
lithography on the SiO2 layer before transferring NW. Then
scanning electron microscopy (SEM, S-4800) was utilized to
determine the position of single NW by the cross markings.
After that, the photoresist was spin-coated. Then electron beam
lithography (EBL) technology was used to form electrode pat-
terns at both ends of the positioned single NW [Fig. 1(c)].
Finally, the metal electrodes of Ti/Au (20/60 nm) were pre-
pared at both NW ends by electron beam evaporation and
lift-off processes [Fig. 1(d)].

C. Characterization and Measurements
In this work, SEM (S-4800) was utilized to characterize
the morphology and position of NWs. Aberration-corrected
scanning transmission electron microscopy (AC-STEM) and
high-resolution energy-dispersive X-ray (EDX) mapping were
operated to measure the morphology and element distribution
of NWs. Current–voltage (I–V) characteristics were measured
using an Agilent B1505A semiconductor parameter analyzer.
During the response measurements, the 365 nm LED was
used as the light source, which was controlled by a function gen-
erator (FY6900-20M). To characterize the optical properties, a
photoluminescence (PL, SP2500i) system with a 325 nm laser
was utilized. X-ray photoelectron spectroscopy (XPS, PHI 5000
Versaprobe III, ULVAC-PHI) was carried out to characterize the
chemical states and atomic binding states of the NWs.

D. Neuromorphic Simulation
A 784 × 100 × 10multilayer perceptron (MLP) neural network
model was set up based on the experimental results of device
parameters, such as the nonlinear values. Each synaptic de-
vice acts as a neuron in the neural network. The Modified
National Institute of Standards and Technology (MNIST)
dataset was used for input. The image pixel information is
28 × 28, corresponding to 784 input neurons [39]. The output
of 10 classes of digits (0–9) could be converted into one pot
vector for recognition, such as 2 �> �0, 0, 1, 0, 0, 0, 0�. In this
model, the sigmoid function was used as the activation func-
tion. The random gradient descent method was used as the
optimization algorithm to continuously iterate and optimize
the weight value [40]. Furthermore, the backpropagation algo-
rithm was used to continuously adjust the weight value and
threshold value of the network, so as to minimize the total
square error and update the weight value in real time [41].
Finally, the evaluation function was used to convert the one
pot vector into numbers. By evaluating and predicting the cor-
rect numbers, the MNIST handwritten dataset could complete
the number recognition.
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3. RESULTS AND DISCUSSION

A. Characterization of GaN Nanowires
In the biological nervous system, the signal transmission be-
tween adjacent neurons is completed by synapses [Figs. 1(e)
and 1(f )], which are composed of presynapse, postsynapse,
and synaptic cleft [40]. In this work, the structure of NW opto-
electronic synaptic device is proposed to be similar to that of
biological synapses [Figs. 1(d)–1(f )]. As illustrated in Fig. 1(g),
the grown NWs show a good verticality and uniformity. The
heights of the NWs are over 1300 nm, and the diameter ranges
from 60 nm to 120 nm. Figure 1(h) shows the PL peak centers
at ∼365 nm, corresponding to the GaN characteristic peak.
Furthermore, the device structure of the single-NW-based syn-
apse was successfully fabricated without any obvious fractures
[Fig. 1(i)]. According to Figs. 1(d) and 1(i), the structure of
the single-NW-based synapse is consistent with the design.
In such an artificial synaptic device, the incident light, the elec-
trodes, and the light-generated carriers play the roles of action

potential, presynaptic/postsynaptic membrane, and neuro-
transmitter, respectively. Moreover, when the device is applied
by light stimulation, the collected current is regarded as excita-
tory postsynaptic current (EPSC), depending on the synaptic
weight [42].

In addition, the XPS spectrum is utilized to determine the
chemical characteristics and binding states of atoms present in
GaN NWs. From Fig. 2(a), the entire XPS spectrum shows the
expected constituent elements of Ga and N. The N 1s spec-
trum in Fig. 2(b) can be deconvoluted into three peaks.
Among them, the peak at ∼397.3 eV corresponds to the bond-
ing of N–Ga, while the other two peaks at ∼395.6 eV and
∼392.4 eV correspond to Ga LMM Auger transitions [43].
As shown in Figs. 2(a), 2(c), and 2(d), the oxygen element ex-
ists, which is usually attributed to unintentional doping during
the growth process and the oxidation of NW surface in air.
However, the peak intensity of Ga–N is much higher than that
of Ga–O [Fig. 2(c)], proving that GaN is the dominant
material within the NWs.

Fig. 1. (a) Grow the GaN NWs on Si substrate. (b) Transfer the NWs onto the Si∕SiO2 substrate. (c) Spin coat photoresist and fabricate the
electrode patterns by electron beam lithography. (d) Fabricate the metal electrodes at both NW ends. (e) Schematic diagram of a biological synapse
connecting two adjacent neurons. (f ) Schematic illustration of the biological synapse. (g) Top-view and side-view SEM images of the GaN NWs.
(h) PL curve of the GaN NWs. (i) Top-view SEM image of the single-GaN-NW synaptic device.
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As shown in Fig. 3(a), the top of the GaN NW exhibits
a small V-shaped pit (Region I) and an uneven surface
(Region II). Figure 3(b) shows the presence of GaOx on the
top surface. According to the atomic arrangement in Fig. 3(c),
it is proposed that the amorphous GaOx can be produced on
the surface of the GaN NW [44]. Moreover, Figs. 3(d)–3(f )
reveal a distinct GaOx shell on the sidewall of the GaN NW.
To ensure a more accurate analysis, the side-view STEM image
on various NWs has been observed, which reveals the GaOx
formation within the NWs [Fig. 3(g)]. According to the
EDX spectrum shown in Fig. 3(h), the O intensity provides
the evidence for the presence of oxygen vacancies [45]. The
existence of oxygen vacancies can be a key reason contributing
to the synaptic characteristics of devices [46].

B. Synaptic Plasticity of Artificial Synapse
As illustrated in Fig. 4(a), when the biological presynapse is
stimulated, the presynapse membrane will trigger the rapid
release of neurotransmitters, including dopamine (Dopa) for
excitatory response and acetylcholine (Ach) for memory forma-
tion [47]. Then the receptor of the postsynapse membrane
opens the Ca2� channel to realize signal transmission [I process
in Fig. 4(a)] [28]. When the stimulation is removed, the neuro-
transmitter is rapidly degraded or recycled into the cell, result-
ing in closing the Ca2� channel [II process in Fig. 4(a)]. When
stimulated again, more neurotransmitters are bound to recep-
tors, leading to open more Ca2� channels and the higher signal
transmission [III process in Fig. 4(a)]. During this process, the
change of synaptic weight represents the degree of connectivity
between neurons. The synaptic weight can be changed by ad-
justing the activity of presynaptic and postsynaptic neurons,
which is commonly called synaptic plasticity [48]. As one
of the important features of biological synapses, the synaptic
plasticity lays the foundation for many functions in the

human brain, such as learning, forgetting, and image recogni-
tion [49].

From Fig. 4(b), EPSC is induced by two continuous light
pulses with an interval of 1s. The second peak (A2) is obviously
larger than the first peak (A1). Thus, the current generated by
the first optical pulse will not decay to the initial value before
the arrival of the second optical pulse. In other words, when the
second pulse is executed on the basis of the first pulse, the
EPSC value can be greatly increased. The whole processes
within the artificial synaptic device correspond to those within
biological synapses [I, II, and III processes in Figs. 4(a) and
4(b)]. The increased EPSC caused by more carrier generation
is similar to the dynamics of more Ca2� influx in biological
synapses [2]. Hence, such a single-GaN-NW synaptic device
has the ability to simulate biological synapses. To study the
short-term potentiation and long-term potentiation (LTP) of
the device, the EPSC value of device was measured under more
consecutive light pulses [Fig. 4(c), 25 light pulses with an in-
terval of 5 s]. In general, an exponential decay is used to study
the forgetting curve [47],

I t � I 0 � B · exp
�
−
t
τd

�
, (1)

where I t represents the current at the time of t and I 0 represents
the initial current. B is a constant factor, and τd is the constant
of decay time. From Figs. 4(b) and 4(c), τ is increased more than
20 times from 0.33 to 7.58 s triggered by more light pulses,
demonstrating the existence of STM-to-LTM transition.

In biological systems, synaptic plasticity depends on the
spike duration, frequency, and light intensity of the exter-
nal environment. Inspired by biological synapses, the spike-
duration dependence and light-intensity dependence of a single
GaN NW are explored and shown in Fig. 5. When the power

Fig. 2. (a) Full-scan XPS spectrum of the GaN NWs. Narrow-scan XPS spectra of (b) N 1s, (c) Ga 3d, and (d) O 1s elements within GaN NWs.

1670 Vol. 11, No. 10 / October 2023 / Photonics Research Research Article



Fig. 3. (a) STEM image and (b) high-resolution EDX mapping of the NW top. (c) AC-STEM image of the atomic model of top NW crystals.
(d) STEM image and (e) high-resolution EDX mapping of the NW sidewall. (f ) AC-STEM image of the atomic model of NW sidewall crystals.
(g) Side-view STEM image and (h) EDX spectrum of the GaN NW.

Fig. 4. (a) Schematic illustration of the stimulation processes in a biological synapse. EPSC of the single-GaN-NW synaptic device triggered by (b) two
consecutive pulses and (c) multiple consecutive pulses. Light power intensity and operating bias of the device are 6.11 mW cm−2 and 5 V, respectively.

Research Article Vol. 11, No. 10 / October 2023 / Photonics Research 1671



intensity of the stimulated light pulse increases from about 0.21
to 6.59 mW cm−2, the EPSC gradually increases [Figs. 5(a) and
5(b)]. Hence, the maximum EPSC is dependent on the power
intensity of the incident light pulse. Meanwhile, the τd data
fitted by Eq. (1) increase from 3.6 to 7.2 s [Fig. 5(c)], strongly
indicating the transfer from STM to LTM [50]. In addition,
the responsivity of the single GaN NW under 365 nm illumi-
nation can be calculated using the following formula [34]:

R � I light − Idark
PinS

: (2)

I light and I dark represent the saturation current under illumi-
nation and the dark current in the absence of light, respectively
[32]. P in is the incident power intensity �6.59 mW cm−2�:
S represents the effective area in PD, which uses the area of
single GaN NW facing the illumination (2.8 × 10−9 cm2).

From Fig. 5(d), it can be observed that the device exhibits a
high responsivity (4.67 AW−1), which is primarily attributed
to the small size of the single NW.

As clearly shown in Figs. 5(e) and 5(f ), when the device is
stimulated by the smaller time intervals (Δt), the EPSC can be
enhanced. When the next pulse is stimulated, the previous
pulse has not returned to the initial state in time. The smaller
the time interval is, the higher the starting point of current
for the next light pulse. However, when Δt is smaller than
200 ms, the EPSC tends to be saturated. This behavior is sim-
ilar to biological PSC saturation, which is caused by postsynap-
tic receptor saturation interacting with limited presynaptic
calcium flux [51].

C. Energy Consumption and Working Mechanism
Neuromorphic computing based on the human brain has the
advantage of low energy consumption [52]. Thus, the energy

Fig. 5. (a) EPSC curves and (b) extracted results of the single-GaN-NW synaptic device under illumination with different incident light power
densities. The light wavelength is 365 nm, and the operating bias of the device is 5 V. (c) Decay time constant of STM-to-LTM transition induced by
different light intensities. (d) Responsivity of single GaN NW under 365 nm illumination at different biases (1–5 V). (e) EPSC curves and (f ) ex-
tracted results of the single-GaN-NW synaptic device under illumination with different time intervals. The light pulse width is fixed as 500 ms. The
light power intensity is 6.11 mW cm−2, and the operating bias of device is 5 V.
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consumption is an important parameter for evaluating the per-
formance of the synaptic device, which can be calculated by the
following equation [53]:Z

t1

t0
V · I�x�dx, (3)

where t0 and t1 represent the time of light on and light off,
respectively, V is the working voltage, and I is the response
current of the device. It is reported that the energy consump-
tion for a single synaptic event in human brain is ∼10 fJ [10].
As shown in Fig. 6, for the single synaptic event with a pulse
width of 1 s and a voltage of 5 V, the energy consumption is
calculated to be 2.72 pJ. Such energy consumption of the
artificial synapse is very low, which is very close to that in
the human brain. Compared to those of other synaptic devices
based on GaN materials, the energy consumption of our syn-
aptic devices can be reduced by more than 92% (Table 1).
Furthermore, the light pulse width and working voltage used
in this work are very high. In other words, the energy consump-
tion could be reduced significantly by decreasing the pulse
width and working voltage in further study.

In order to deeply understand the working mechanism of
the optoelectronic synapse, an equivalent circuit model of
the metal–semiconductor–metal (M1−S−M2) structure and
energy band diagrams are plotted in Figs. 7(a)–7(f ). As only

the NW can absorb the photons and generate the carriers
in the synaptic device, the main source of photocurrent con-
tribution originates from the exposed NW [57]. M1 electrode
is applied the negative bias, while M2 electrode is applied
the positive bias [Fig. 7(a)]. In the M1−S−M2 structure, the
performance of the device with Schottky contact [Fig. 7(b)]
is mainly determined by the reverse-biased Schottky barrier
(M1−S, Φsh1) [2]. Thus, to simplify the analyses, only M1−S
contact is discussed here. Furthermore, the resistance before
and after ultraviolet (UV) light irradiation is significantly re-
duced. The decrease of Φ0

sh1 and RNW could be the key factors
contributing to the increase of current [2].

A Schottky contact is formed at the local M1−S contact
(Φ0

sh1), and the defects within the NW are shown in Fig. 7(c)
without illumination. When the device is stimulated by light
pulses, the photogenerated carriers separate, and the reduction
of Φ0

sh1 is conducive to carrier transport [Φ1
sh1 in Fig. 7(d)].

Some photogenerated holes are captured by the oxygen vacan-
cies (VO), forming quite stable V2�

O complexes by the following
equation [58]:

VO � 2h� → V2�
O : (4)

Such complexes make electron–hole (e−h) recombination
more difficult, causing a portion of the photogenerated elec-
trons to remain in the conduction band and contributing to
the maintenance of the photocurrent even after the illumina-
tion is interrupted [Fig. 7(e)] [58]. When the light pulse is
stimulated again [Fig. 7(f )], more photogenerated electrons
and holes will be collected by the electrodes, generating a
greater current than the last one, leading to the synaptic char-
acteristics. The order of the Φsh1 values mentioned above
is Φ0

sh1 > Φ2
sh1 > Φ1

sh1 > Φ3
sh1.

The learning process of a human typically takes place in a
step-by-step manner. Unless the same information is acquired
continuously over time, the information acquired and stored in
temporary memory will initially decay. This process is consis-
tent with Ebbinghaus’s forgetting curve, which further proves
that the forgetting process of the human brain is a function
of time [47]. In order to study the device in simulating the
learning behavior of the human brain, the synaptic weight
(Δw) is used to represent the memory level of the device, which
is defined as the following equation [59]:

Δw � In − I0
I0

: (5)

I0 and In are the initial current and the current after light
stimulation (n is the number of light pulses), respectively. From
Fig. 4, the device is found to have the characteristics of both
STM (two light pulses) and LTM (21 light pulses). To simplify
the measurement, a learning stage of presynaptic stimulation is
defined to contain 21 light pulses [Fig. 7(g)]. In the first learn-
ing process, the synaptic weight is gradually increased. After
removing the light stimulation, the synaptic weight gradually
decreases to a certain level (first forgetting). In the subsequent
learning process (second learning), by only 11 light pulses, the
stimulated synaptic weight is able to reach the highest level
achieved during the first learning process, which requires more
(21) light pulses. Then, the synaptic weight continuously in-
creases to a higher memory level. After the same time of 5 s

Fig. 6. EPSC of the synaptic device under illumination of light
pulses. The light power intensity is 6.11 mW cm−2.

Table 1. Comparison between This Work and Some
State-of-the-Art Synaptic Devices with the Same
Structure or Material

Materials Structure
Voltage
(V)

Pulse
Width
(ms)

Energy
Consumption

(pJ) Reference

TiO2 NW 10 50 130 [53]
InGaAs NW 0.0001 1 1.78 × 10−3 [54]
ZnO NW 1 1000 1 × 106 [28]
Si NW 1 50 1000 [55]
InAs NW 0.5 2 12.5 [52]
GaN Film 0.01 1000 33.4 [11]
GaN MW / / 500 [56]
GaN NW 5 1000 2.72 This work
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for decaying, the synaptic weight of the second forgetting pro-
cess keeps a higher level than the first decay. Similar phenomena
can also be achieved in the third learning and forgetting proc-
esses. These dynamic “learning−forgetting” processes resemble
the behavior of the human brain that less time is required
to relearn the missing information previously memorized
and the memories can be strengthened after relearning [8].
Therefore, the synaptic device based on a single GaN NW

can functionally emulate this stepwise learning style in the
human brain.

D. Number Recognition for Neuromorphic Computing
According to the instructions in NeuroSimV3.0 [60,61], a syn-
aptic device based on a single GaN NW is employed to sim-
ulate ANNs used for pattern recognition. Meanwhile, the
entire neural network can be operated by stimulating one

Fig. 7. (a) Equivalent circuit model and (b) I–V curve of the artificial synaptic device based on a single GaN NW. Schematic energy band
diagrams of the single GaN NW (c) in dark, (d) under the first light stimulation, (e) without light stimulation, and (f ) under the second light
stimulation. (g) Learning experience of the artificial synaptic device.
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synaptic device, which is based on the assumption that each
neuron is the same in the ANNs [61]. As shown in Fig. 8(a),
a three-layer perception neural model is adopted to perform
supervised learning with the backpropagation algorithm and
random gradient descent algorithm [62]. The handwritten dig-
its are obtained from the MNIST database, which are divided
into 28 × 28 pixels corresponding to 784 input neurons [39].
The hidden layer consists of 100 neurons, and the output layer
consists of 10 neurons corresponding to 10 digits ranging from
0 to 9 [28]. Among the connections of the neurons, the syn-
aptic weights will eventually be saved through the calculation
process of algorithms, which were extracted from the conduct-
ance of different potentiating and depressing states shown in
Fig. 8(b) by the following equations [54,63]:

GLTP � B
�
1 − e�−

P
A�
�
� Gmin, (6)

GLTD � −B
�
1 − e�

P−Pmax
A �

�
� Gmax, (7)

B � Gmax − Gmin

1 − e�
−Pmax

A � , (8)

Gnorm � Gn − Gmin

Gmax − Gmin

: (9)

GLTP and GLTD are the conductance for LTP and long-term
depression (LTD), respectively [54]. Gmax, Gmin, and Pmax are
directly extracted from the experimental data, which represent
the maximum conductance, minimum conductance, and maxi-
mum pulse number required to switch the device between the

minimum and maximum conductance states [54]. A is the
parameter that controls the nonlinear behavior of the weight
update. A can be positive (blue) or negative (black) [54].
B is simply a function of A that fits the functions by Gmax,
Gmin, and Pmax: Gnorm is the conductance after normalization.
Gn is the conductance value of the current state [54]. Using
Eqs. (6)–(9), the nonlinear data of LTP and LTD are fitted to
be 3.38 and −3.69, respectively [Fig. 8(b)]. By simulating ANN
on the MNIST database, 20 samples are randomly selected in
Fig. 8(c), while 10,000 samples are identified in Fig. 8(d).
Most numbers can be identified accurately [Fig. 8(c)]. As
clearly illustrated in Fig. 8(d), such a simulated network can
achieve a high recognition rate up to 90% after only three train-
ing epochs. The recognition rate can be increased to 93% after
30 training epochs. Considering the requirement of low-power
consumption of the synaptic devices, fewer training times can
reduce the energy consumption in the supervised learning proc-
esses substantially. Hence, this single-GaN-NW synaptic device
has the great application potential in neuromorphic computing
technology.

4. CONCLUSION

In this work, an artificial synaptic device based on a single GaN
NW has been fabricated successfully, which exhibits the char-
acteristics of spike-duration dependence and light-intensity
dependence. Furthermore, the transition from STM to LTM
and the human learning behavior are also emulated in this
light-stimulated synaptic device. Furthermore, the energy con-
sumption of the single-GaN-NW synaptic device can be as low
as 2.72 × 10−12 J for a single synaptic event. Thanks to the

Fig. 8. (a) Schematic illustration of ANN simulation using 784 input neurons and 10 output neurons, connected by 784 × 100 × 10 synaptic
weights. (b) Experimental data and fitted curves of LTP/LTD characteristics triggered by light pulses. During the measurements of LTP and LTD
data, the light power intensity and bias voltage are 6.59 mW cm−2 and 5 V, respectively. (c) Recognition results of the randomly selected numbers
from the MNIST database. (d) Recognition accuracy versus training epoch in the simulation.
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dynamic “learning-forgetting” performance, the artificial syn-
aptic device can resemble the brain-like behavior of less time
being required to relearn the missing information previously
memorized and strengthen memories after relearning.
Simulation of a neural network utilizing the single-GaN-
NW synapse is carried out, demonstrating a high recognition
accuracy up to 93% after 30 training epochs. Hence, such an
artificial synapse based on a single NW has great potential in a
wide range of applications requiring low power consumption,
such as the neuromorphic computing systems and bio-realistic
artificial intelligence.
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