• Journal of Infrared and Millimeter Waves
  • Vol. 43, Issue 5, 603 (2024)
Yun-Peng LI1,2,4, Jia-Cheng LUO2,3,4, Ruo-Nan JI2,4, Mao-Bin XIE2,4,5..., Wen-Nan CUI2, Shao-Wei WANG2,4,5,*, Feng LIU3 and Wei LU1,2,4,5|Show fewer author(s)
Author Affiliations
  • 1School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China
  • 2State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 3Department of Physics,Shanghai Normal University,Shanghai 200234,China
  • 4Shanghai Engineering Research Center of Energy-Saving Coatings,Shanghai 200083,China
  • 5University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2024.05.003 Cite this Article
    Yun-Peng LI, Jia-Cheng LUO, Ruo-Nan JI, Mao-Bin XIE, Wen-Nan CUI, Shao-Wei WANG, Feng LIU, Wei LU. Long wavelength infrared metalens fabricated by photolithography[J]. Journal of Infrared and Millimeter Waves, 2024, 43(5): 603 Copy Citation Text show less
    References

    [1] S M WANG, P C WU, V C SU et al. A broadband achromatic metalens in the visible. Nature Nanotechnology, 13, 227-32(2018).

    [2] Q Q CHENG, M L MA, D YU et al. Broadband achromatic metalens in terahertz regime. Sci Bull, 64, 1525-31(2019).

    [3] C XIA, M LIU, J WANG et al. A polarization-insensitive infrared broadband achromatic metalens consisting of all-silicon anisotropic microstructures. Applied Physics Letters, 121, 161701(2022).

    [4] J LI, Y WANG, S LIU et al. Largest aperture metalens of high numerical aperture and polarization independence for long-wavelength infrared imaging. Optics Express, 30, 28882-91(2022).

    [5] F AIETA, P GENEVET, M A KATS et al. Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces. Nano Letters, 12, 4932-6(2012).

    [6] P LALANNE, P CHAVEL. Metalenses at visible wavelengths: past, present, perspectives. Laser & Photonics Reviews, 11, 11(2017).

    [7] J CHEN, X YE, S L GAO et al. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9, 431-7(2022).

    [8] V SARAGADAM, Z HAN, V BOOMINATHAN et al. Foveated Thermal Computational Imaging in the Wild Using All-Silicon Meta-Optics. ArXiv(2022).

    [9] A WIRTH-SINGH, J E FRöCH, Z HAN et al. Large field-of-view thermal imaging via all-silicon meta-optics. Applied Optics(2023).

    [10] G YOON, K KIM, D HUH et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nature Communications, 11, 10(2020).

    [11] M KHORASANINEJAD, W T CHEN, R C DEVLIN et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-4(2016).

    [12] M KHORASANINEJAD, F CAPASSO. Metalenses: Versatile multifunctional photonic components. Science, 358, 8(2017).

    [13] X Z CHEN, L L HUANG, H MUHLENBERND et al. Dual-polarity plasmonic metalens for visible light. Nature Communications, 3(2012).

    [14] A M SHALTOUT, K G LAGOUDAKIS, J VAN DE GROEP et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science, 365, 374(2019).

    [15] R J LIN, V C SU, S M WANG et al. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology, 14, 227(2019).

    [16] A NDAO, L HSU, J HA et al. Octave bandwidth photonic fishnet-achromatic-metalens. Nature Communications, 11, 3205(2020).

    [17] L LI, Z X LIU, X F REN et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 368, 1487(2020).

    [18] Z XUAN, J LI, Q LIU et al. Artificial Structural Colors and Applications. The Innovation, 2, 100081(2021).

    [19] W T CHEN, A Y ZHU, J SISLER et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications, 10, 7(2019).

    [20] I JAVED, J KIM, M A NAVEED et al. Broad-Band Polarization-Insensitive Metasurface Holography with a Single-Phase Map. Acs Applied Materials & Interfaces, 14, 36019-26(2022).

    [21] C OGAWA, S NAKAMURA, T ASO et al. Rotational varifocal moire metalens made of single-crystal silicon meta-atoms for visible wavelengths. Nanophotonics, 11, 1941-8(2022).

    [22] W B FENG, J C ZHANG, Q F WU et al. RGB Achromatic Metalens Doublet for Digital Imaging. Nano Letters, 22, 3969-75(2022).

    [23] M BOSCH, M R SHCHERBAKOV, K WON et al. Electrically Actuated Varifocal Lens Based on Liquid-Crystal-Embedded Dielectric Metasurfaces. Nano Letters, 21, 3849-56(2021).

    [24] S B WEI, G Y CAO, H LIN et al. A Varifocal Graphene Metalens for Broadband Zoom Imaging Covering the Entire Visible Region. Acs Nano, 15, 4769-76(2021).

    [25] M KHORASANINEJAD, A Y ZHUIT, C ROQUES-CARMES et al. Polarization-Insensitive Metalenses at Visible Wavelengths. Nano Letters, 16, 7229-34(2016).

    [26] A ARBABI, Y HORIE, A J BALL et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications, 6, 6(2015).

    [27] Y L WANG, Q B FAN, T XU. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electronic Advances, 4, 7(2021).

    [28] Y J WANG, Q M CHEN, W H YANG et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nature Communications, 12, 7(2021).

    [29] G YOON, K KIM, S U KIM et al. Printable Nanocomposite Metalens for High-Contrast Near-Infrared Imaging. Acs Nano, 15, 698-706(2021).

    [30] M Y SHALAGINOV, S AN, Y F ZHANG et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 12(2021).

    [31] K OU, F L YU, G H LI et al. Broadband Achromatic Metalens in Mid-Wavelength Infrared. Laser & Photonics Reviews, 15, 9(2021).

    [32] M KHORASANINEJAD, F AIETA, P KANHAIYA et al. Achromatic Metasurface Lens at Telecommunication Wavelengths. Nano Letters, 15, 5358-62(2015).

    [33] Z B FAN, Z K SHAO, M Y XIE et al. Silicon Nitride Metalenses for Close-to-One Numerical Aperture and Wide-Angle Visible Imaging. Physical Review Applied, 10, 10(2018).

    [34] H G DONG, F Q WANG, R S LIANG et al. Visible-wavelength metalenses for diffraction-limited focusing double polarization and vortex beams. Optical Materials Express, 7, 4029-37(2017).

    [35] L HUANG, J WHITEHEAD, S COLBURN et al. Design and analysis of extended depth of focus metalenses for achromatic computational imaging. Photonics Research, 8, 1613-23(2020).

    [36] E BAYATI, R PESTOURIE, S COLBURN et al. Inverse designed extended depth of focus meta-optics for broadband imaging in the visible. Nanophotonics, 11, 2531-40(2022).

    [37] M PAN, Y FU, M ZHENG et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light-Science & Applications, 11(2022).

    [38] Q B FAN, M Z LIU, C YANG et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Applied Physics Letters, 113, 4(2018).

    [39] X F ZANG, W W XU, M GU et al. Polarization-Insensitive Metalens with Extended Focal Depth and Longitudinal High-Tolerance Imaging. Advanced Optical Materials, 8, 9(2020).

    [40] Y Q HU, X D WANG, X H LUO et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics, 9, 3755-80(2020).

    [41] K PETELCZYC, S BARá, A C LOPEZ et al. Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model. Optics Express, 19, 25602-16(2011).

    [42] K KAKARENKO, I DUCIN, K GRABOWIECKI et al. Assessment of imaging with extended depth-of-field by means of the light sword lens in terms of visual acuity scale. Biomedical Optics Express, 6, 1738-48(2015).

    [43] N ISHIZUKA, J LI, W FUJI et al. Linear polarization-separating metalens at long-wavelength infrared. Optics Express, 31, 23372-81(2023).

    [44] L HUANG, Z COPPENS, K HALLMAN et al. Long wavelength infrared imaging under ambient thermal radiation via an all-silicon metalens. Optical Materials Express, 11, 2907-14(2021).

    [45] L HUANG, Z COPPENS, K HALLMAN et al. All-Silicon Metalens for Long Wavelength Infrared Imaging.

    [46] N F YU, F CAPASSO. Flat optics with designer metasurfaces. Nat Mater, 13, 139-50(2014).

    [47] C CHEN, W E SONG, J W CHEN et al. Spectral tomographic imaging with aplanatic metalens. Light-Science & Applications, 8, 8(2019).

    [48] A V KILDISHEV, A BOLTASSEVA, V M SHALAEV. Planar Photonics with Metasurfaces. Science, 339, 1232009(2013).

    [49] F BALLI, M A SULTAN, A OZDEMIR et al. An ultrabroadband 3D achromatic metalens. Nanophotonics, 10, 1259-64(2021).

    Yun-Peng LI, Jia-Cheng LUO, Ruo-Nan JI, Mao-Bin XIE, Wen-Nan CUI, Shao-Wei WANG, Feng LIU, Wei LU. Long wavelength infrared metalens fabricated by photolithography[J]. Journal of Infrared and Millimeter Waves, 2024, 43(5): 603
    Download Citation