• Photonics Research
  • Vol. 10, Issue 6, 1517 (2022)
Yang Zhu1, Binbin Lu1, Zhiyuan Fan1, Fuyong Yue1, Xiaofei Zang1、2、*, Alexei V. Balakin3, Alexander P. Shkurinov3, Yiming Zhu1、2、4, and Songlin Zhuang1
Author Affiliations
  • 1Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
  • 3Department of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
  • 4e-mail: ymzhu@usst.edu.cn
  • show less
    DOI: 10.1364/PRJ.455459 Cite this Article Set citation alerts
    Yang Zhu, Binbin Lu, Zhiyuan Fan, Fuyong Yue, Xiaofei Zang, Alexei V. Balakin, Alexander P. Shkurinov, Yiming Zhu, Songlin Zhuang. Geometric metasurface for polarization synthesis and multidimensional multiplexing of terahertz converged vortices[J]. Photonics Research, 2022, 10(6): 1517 Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] F. Gori. Polarization basis for vortex beams. J. Opt. Soc. Am. A, 18, 1612-1617(2001).

    [3] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).

    [4] J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [5] Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun., 5, 4876(2014).

    [6] K. Sueda, G. Miyaji, N. Miyanaga, M. Nakatsuka. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express., 12, 3548-3553(2004).

    [7] E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, E. Santamato. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett., 94, 231124(2009).

    [8] M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun., 96, 123-132(1993).

    [9] A. S. Ostrovsky, C. Rickenstorff-Parrao, V. Arrizón. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt. Lett., 38, 534-536(2013).

    [10] N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [11] L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, S. Zhang. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [12] X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, T. Zentgraf. Dual-polarity plasmonic metalens for visible light. Nat. Commun., 3, 1198(2012).

    [13] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [14] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [15] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. N. Zhu, D. P. Tsai. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [16] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2019).

    [17] R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, D. P. Tsai. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [18] Y. Wang, Q. Chen, W. Yang, Z. Ji, L. Jin, X. Ma, Q. Song, A. Boltasseva, J. Han, V. M. Shalaev, S. Xiao. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun., 12, 5560(2021).

    [19] N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett., 12, 6328-6333(2012).

    [20] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, H. T. Chen. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [21] P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, D. P. Tsai. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett., 17, 445-452(2017).

    [22] D. D. Wen, F. Y. Yue, C. M. Zhang, X. F. Zang, H. G. Liu, W. Wang, X. Z. Chen. Plasmonic metasurface for optical rotation. Appl. Phys. Lett., 111, 023102(2017).

    [23] X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. Xu, Z. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, X. Z. Chen. Polarization encoded color image embedded in a dielectric metasurface. Adv. Mater., 30, 1707499(2018).

    [24] X. F. Zang, H. H. Gong, Z. Li, J. Y. Xie, Q. Q. Cheng, L. Chen, A. P. Shkurinov, Y. M. Zhu, S. L. Zhuang. Metasurface for multi-channel terahertz beam splitters and polarization rotators. Appl. Phys. Lett., 112, 171111(2018).

    [25] A. H. Dorrah, N. A. Rubin, A. Zaidi, M. Tamagnone, F. Capasso. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 15, 287-296(2021).

    [26] L. Q. Cong, N. N. Xu, J. G. Han, W. L. Zhang, R. Singh. A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control. Adv. Mater., 27, 6630-6636(2015).

    [27] L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, W. L. Zhang. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser Photon. Rev., 8, 626-632(2015).

    [28] L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, W. L. Zhang. A perfect metamaterial polarization rotator. Appl. Phys. Lett., 103, 171107(2013).

    [29] X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, X. Zhang. Photonic spin Hall effect at metasurfaces. Science, 339, 1405-1407(2013).

    [30] X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, D. Y. Fan. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci. Appl., 4, e290(2015).

    [31] J. Zhou, H. Qian, G. Hu, H. Luo, S. Wen, Z. Liu. Broadband photonic spin Hall meta-lens. ACS Nano, 12, 82-88(2018).

    [32] X. F. Zang, B. S. Yao, Z. Li, Y. Zhu, J. Y. Xie, L. Chen, A. V. Balakin, A. P. Shkurinov, Y. M. Zhu, S. L. Zhuang. Geometric phase for multidimensional manipulation of photonics spin Hall effect and helicity-dependent imaging. Nanophotonics, 9, 1501-1508(2020).

    [33] X. J. Ni, A. V. Kildishev, V. M. Shalaev, M. Vladimir. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [34] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [35] D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, X. Chen. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [36] X. Li, L. W. Chen, Y. Li, X. H. Zhang, M. B. Pu, Z. Y. Zhao, X. L. Ma, Y. Q. Wang, M. H. Hong, X. G. Luo. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv., 2, e1601102(2016).

    [37] L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, C. W. Qiu. Noninterleaved metasurface for (26 − 1) spin- and wavelength-encoded holograms. Nano Lett., 18, 8016-8024(2018).

    [38] L. Jin, Y. W. Huang, Z. Jin, R. C. Devlin, Z. Dong, S. Mei, M. Jiang, W. T. Chen, Z. Wei, H. Liu, J. Teng, A. Danner, X. Li, S. Xiao, S. Zhang, C. Yu, J. K. W. Yang, F. Capasso, C. W. Qiu. Dielectric multi-momentum meta-transformer in the visible. Nat. Commun., 10, 4789(2019).

    [39] Q. Song, A. Baroni, R. Sawant, P. Ni, V. Brandli, S. Chenot, S. Vezian, B. Damilano, P. de Mierry, S. Khadir, P. Ferrand, P. Genevet. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nat. Commun., 11, 2651(2020).

    [40] G. X. Li, S. M. Chen, N. Pholchai, B. Reineke, P. W. H. Wong, E. Y. B. Pun, K. W. Cheah, T. Zentgraf, S. Zhang. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater., 14, 607-612(2015).

    [41] W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, T. Zentgraf. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun., 7, 11930(2016).

    [42] Z. Li, W. Liu, Z. Li, C. Tang, H. Cheng, J. Li, X. Chen, S. Chen, J. Tian. Tripling the capacity of optical vortices by nonlinear metasurface. Laser Photon. Rev., 12, 1800164(2018).

    [43] G. Hu, X. Hong, K. Wang, J. Wu, H.-X. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, C. W. Qiu. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photonics, 13, 467-472(2019).

    [44] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [45] H. Cheng, Z. Liu, S. Chen, J. Tian. Emergent functionality and controllability in few-layer metasurfaces. Adv. Mater., 27, 5410-5421(2015).

    [46] E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, E. Hasman. Photonic spin-controlled multifunctional shared-aperture antenna array. Science, 352, 1202-1206(2015).

    [47] Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, P. Genevet. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun., 11, 4186(2020).

    [48] K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. N. Burokur, J. Tan. Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing. Laser Photon. Rev., 15, 2000351(2020).

    [49] F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, X. Chen. Vector vortex beam generation with a single plasmonic metasurface. ACS Photon., 3, 1558-1563(2016).

    [50] Y. J. Bao, J. C. Ni, C. W. Qiu. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater., 32, 1905659(2020).

    [51] Y. Zhang, W. Liu, J. Gao, X. Yang. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Adv. Opt. Mater., 6, 1701228(2018).

    [52] J. Han, Y. Intaravanne, A. Ma, R. Wang, S. Li, Z. Li, S. Chen, J. Li, X. Chen. Optical metasurfaces for generation and superposition of optical ring vortex beams. Laser Photon. Rev., 14, 2000146(2020).

    [53] M. Liu, P. Huo, W. Zhu, C. Zhang, S. Zhang, M. Song, S. Zhang, Q. Zhou, L. Chen, H. J. Lezec, A. Agrawal, Y. Lu, T. Xu. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commun., 12, 2230(2021).

    [54] J. Xie, H. Guo, S. Zhuang, J. Hu. Polarization-controllable perfect vortex beam by a dielectric metasurface. Opt. Express, 29, 3081-3089(2021).

    [55] F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, X. Chen. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv. Mater., 29, 1603838(2017).

    [56] H. Zhao, B. Quan, X. Wang, C. Gu, J. Li, Y. Zhang. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photon., 5, 1726-1732(2017).

    [57] Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, X. Luo. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv. Opt. Mater., 5, 1600502(2015).

    [58] Y. Ou, M. Zhang, F. Zhang, J. Cai, H. Yu. All-dielectric metasurfaces for generation and detection of multi-channel vortex beams. Appl. Phys. Express, 12, 082004(2019).

    [59] S. Zhang, P. Huo, W. Zhu, C. Zhang, P. Chen, M. Liu, L. Chen, H. J. Lezec, A. Agrawal, Y. Lu, T. Xu. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface. Laser Photon. Rev., 14, 2000062(2020).

    [60] S. Liu, C. Li, J. Liu, L. Zhu, Z. Xu, J. Zhou, Q. Yang, J. Wang. Multiple orbital angular momentum (OAM) modes (de)multiplexer based on single complex phase mask. European Conference on Optical Communication (ECOC)(2014).

    [61] P. Huo, C. Zhang, W. Zhu, M. Liu, S. Zhang, S. Zhang, L. Chen, H. J. Lezec, A. Agrawal, Y. Lu, T. Xu. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett., 20, 2791-2798(2020).

    [62] J. Hu, D. Wang, D. Bhowmik, T. Liu, S. Deng, M. P. Knudson, X. Ao, T. W. Odom. Lattice-resonance metalenses for full reconfigurable imaging. ACS Nano, 13, 4613-4620(2019).

    [63] S. Colburn, A. Zhan, A. Majumdar. Metasurface optics for full-color computational imaging. Sci. Adv., 4, eaar2114(2018).

    Yang Zhu, Binbin Lu, Zhiyuan Fan, Fuyong Yue, Xiaofei Zang, Alexei V. Balakin, Alexander P. Shkurinov, Yiming Zhu, Songlin Zhuang. Geometric metasurface for polarization synthesis and multidimensional multiplexing of terahertz converged vortices[J]. Photonics Research, 2022, 10(6): 1517
    Download Citation