• Laser & Optoelectronics Progress
  • Vol. 58, Issue 12, 1200001 (2021)
Jianyu Yang1, Hao Dong1, Fulin Xing1, Fen Hu1, Leiting Pan1、2、*, and Jingjun Xu1
Author Affiliations
  • 1Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
  • 2State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
  • show less
    DOI: 10.3788/LOP202158.1200001 Cite this Article Set citation alerts
    Jianyu Yang, Hao Dong, Fulin Xing, Fen Hu, Leiting Pan, Jingjun Xu. Single-Molecule Localization Super-Resolution Microscopy and Its Applications[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1200001 Copy Citation Text show less
    References

    [1] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018). http://www.ncbi.nlm.nih.gov/pubmed/30166485

    [2] Möckl L, Moerner W E. Super-resolution microscopy with single molecules in biology and beyond-essentials, current trends, and future challenges[J]. Journal of the American Chemical Society, 142, 17828-17844(2020). http://pubs.acs.org/doi/10.1021/jacs.0c08178

    [3] Jacquemet G, Carisey A F, Hamidi H et al. The cell biologist's guide to super-resolution microscopy[J]. Journal of Cell Science, 133, jcs240713(2020).

    [4] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-19-11-780

    [5] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences, 97, 8206-8210(2000).

    [6] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000). http://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2818.2000.00710.x

    [7] Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005). http://europepmc.org/articles/PMC1201569

    [8] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-795(2006).

    [9] Yang J Y, Pan L T, Hu F et al. Stochastic optical reconstruction microscopy and its application[J]. Infrared and Laser Engineering, 46, 1103008(2017).

    [10] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [11] Sharonov A, Hochstrasser R M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes[J]. Proceedings of the National Academy of Sciences, 103, 18911-18916(2006). http://dx.doi.org/10.1073/pnas.0609643104

    [12] Miller H, Zhou Z K, Shepherd J et al. Single-molecule techniques in biophysics: a review of the progress in methods and applications[J]. Reports on Progress in Physics, 81, 024601(2018).

    [13] Li Y Z, Li C K, Hao X et al. Review and prospect for single molecule localization microscopy[J]. Laser & Optoelectronics Progress, 57, 240002(2020).

    [14] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017). http://www.ncbi.nlm.nih.gov/pubmed/28008086

    [15] Hinterdorfer P, Oijen A. Handbook of single-molecule biophysics[M], 95-127(2009).

    [16] Sheppard C J R. Axial resolution of confocal fluorescence microscopy[J]. Journal of Microscopy, 154, 237-241(1989). http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2818.1989.tb00586.x

    [17] Thompson R E, Larson D R, Webb W W. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophysical Journal, 82, 2775-2783(2002).

    [18] Kay S M. Fundamentals of statistical signal processing[M], 83-180(1993).

    [19] Ober R J, Ram S, Ward E S. Localization accuracy in single-molecule microscopy[J]. Biophysical Journal, 86, 1185-1200(2004). http://www.cell.com/biophysj/abstract/S0006-3495(04)74193-4

    [20] Deschout H, Zanacchi F C, Mlodzianoski M et al. Precisely and accurately localizing single emitters in fluorescence microscopy[J]. Nature Methods, 11, 253-266(2014). http://europepmc.org/abstract/med/24577276

    [21] Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy[J]. Nature Methods, 11, 267-279(2014). http://europepmc.org/abstract/med/24577277

    [22] Abraham A V, Ram S, Chao J et al. Quantitative study of single molecule location estimation techniques[J]. Optics Express, 17, 23352-23373(2009).

    [23] Holden S J, Uphoff S, Kapanidis A N. DAOSTORM: an algorithm for high-density super-resolution microscopy[J]. Nature Methods, 8, 279-280(2011). http://www.nature.com/articles/nmeth0411-279

    [24] Zhu L, Zhang W, Elnatan D et al. Faster STORM using compressed sensing[J]. Nature Methods, 9, 721-723(2012). http://europepmc.org/articles/PMC3477591

    [25] Cox S, Rosten E, Monypenny J et al. Bayesian localization microscopy reveals nanoscale podosome dynamics[J]. Nature Methods, 9, 195-200(2011). http://europepmc.org/articles/PMC3272474

    [26] Marsh R J, Pfisterer K, Bennett P et al. Artifact-free high-density localization microscopy analysis[J]. Nature Methods, 15, 689-692(2018).

    [27] Mailfert S, Touvier J, Benyoussef L et al. A theoretical high-density nanoscopy study leads to the design of UNLOC, a parameter-free algorithm[J]. Biophysical Journal, 115, 565-576(2018).

    [28] Diekmann R, Kahnwald M, Schoenit A et al. Optimizing imaging speed and excitation intensity for single-molecule localization microscopy[J]. Nature Methods, 17, 909-912(2020). http://www.nature.com/articles/s41592-020-0918-5

    [29] Huang B, Wang W, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).

    [30] Bates M, Huang B, Dempsey G T et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 317, 1749-1753(2007). http://jmicro.oxfordjournals.org/external-ref?access_num=10.1126/science.1146598&link_type=DOI

    [31] Mennella V, Keszthelyi B, McDonald K L et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization[J]. Nature Cell Biology, 14, 1159-1168(2012).

    [32] McGorty R, Kamiyama D, Huang B. Active microscope stabilization in three dimensions using image correlation[J]. Optical Nanoscopy, 2, 24380058(2013). http://europepmc.org/abstract/med/24380058

    [33] Coelho S, Baek J, Graus M S et al. Ultraprecise single-molecule localization microscopy enablesin situ distance measurements in intact cells[J]. Science Advances, 6, eaay8271(2020).

    [34] Lin W N, Jin L H, Xu Y K. Progress onsingle-molecule localization algorithms for super-resolution imaging[J]. Chinese Journal of Biomedical Engineering, 39, 229-237(2020).

    [35] Sage D, Pham T A, Babcock H et al. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software[J]. Nature Methods, 16, 387-395(2019).

    [36] Henriques R, Lelek M, Fornasiero E F et al. QuickPALM: 3D real-time photoactivation nanoscopy image processing in Image[J]. Nature Methods, 7, 339-340(2010). http://europepmc.org/abstract/MED/20431545

    [37] Ovesný M, Křížek P, Borkovec J et al. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging[J]. Bioinformatics, 30, 2389-2390(2014).

    [38] Bernhem K, Brismar H. SMLocalizer, a GPU accelerated ImageJ plugin for single molecule localization microscopy[J]. Bioinformatics, 34, 137-138(2018).

    [39] Davis J L, Soetikno B, Song K H et al. RainbowSTORM: an open-source ImageJ plug-in for spectroscopic single-molecule localization microscopy (sSMLM) data analysis and image reconstruction[J]. Bioinformatics, 36, 4972-4974(2020). http://www.ncbi.nlm.nih.gov/pubmed/32663240

    [40] Ries J. SMAP: a modular super-resolution microscopy analysis platform for SMLM data[J]. Nature Methods, 17, 870-872(2020). http://www.nature.com/articles/s41592-020-0938-1

    [41] Jimenez A, Friedl K, Leterrier C. About samples, giving examples:optimized single molecule localization microscopy[J]. Methods, 174, 100-114(2020). http://www.sciencedirect.com/science/article/pii/S104620231830450X

    [42] Pereira P M, Albrecht D, Culley S et al. Fix your membrane receptor imaging: actin cytoskeleton and CD4 membrane organization disruption by chemical fixation[J]. Frontiers in Immunology, 10, 675(2019).

    [43] Leyton-Puig D, Kedziora K M, Isogai T et al. PFA fixation enables artifact-free super-resolution imaging of the actin cytoskeleton and associated proteins[J]. Biology Open, 5, 1001-1009(2016). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958280/

    [44] Whelan D R, Bell T D M. Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters[J]. Scientific Reports, 5, 7924(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4300460/

    [45] Kaplan C, Ewers H. Optimized sample preparation for single-molecule localization-based superresolution microscopy in yeast[J]. Nature Protocols, 10, 1007-1021(2015).

    [46] Hamers-Casterman C, Atarhouch T, Muyldermans S et al. Naturally occurring antibodies devoid of light chains[J]. Nature, 363, 446-448(1993).

    [47] Keppler A, Gendreizig S, Gronemeyer T et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo[J]. Nature Biotechnology, 21, 86-89(2003). http://jxb.oxfordjournals.org/external-ref?access_num=10.1038/nbt765&link_type=DOI

    [48] Los G V, Encell L P, McDougall M G et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis[J]. ACS Chemical Biology, 3, 373-382(2008). http://www.ncbi.nlm.nih.gov/pubmed/18533659

    [49] Virant D, Traenkle B, Maier J et al. A peptide tag-specific nanobody enables high-quality labeling for dSTORM imaging[J]. Nature Communications, 9, 930(2018).

    [50] Wang S, Moffitt J R, Dempsey G T et al. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging[J]. Proceedings of the National Academy of Sciences, 111, 8452-8457(2014). http://www.ncbi.nlm.nih.gov/pubmed/24912163

    [51] Jungmann R, Steinhauer C, Scheible M et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami[J]. Nano Letters, 10, 4756-4761(2010). http://pubs.acs.org/doi/10.1021/nl103427w

    [52] Schnitzbauer J, Strauss M T, Schlichthaerle T et al. Super-resolution microscopy with DNA-PAINT[J]. Nature Protocols, 12, 1198-1228(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=8a996dbb9ce256c5b274329321f39226

    [53] Auer A, Strauss M T, Schlichthaerle T et al. Fast, background-free DNA-PAINT imaging using FRET-based probes[J]. Nano Letters, 17, 6428-6434(2017).

    [54] Pan L T, Hu F, Zhang X Z et al. Multicolor single-molecule localization super-resolution microscopy[J]. Acta Optica Sinica, 37, 0318010(2017).

    [55] Bates M, Dempsey G T, Chen K H et al. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection[J]. Chemphyschem, 13, 99-107(2012).

    [56] Heilemann M, van de Linde S, Schüttpelz M et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angewandte Chemie, 47, 6172-6176(2008). http://dx.doi.org/10.1002/anie.200802376

    [57] van de Linde S, Löschberger A, Klein T et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes[J]. Nature Protocols, 6, 991-1009(2011). http://cardiovascres.oxfordjournals.org/lookup/external-ref?access_num=21720313&link_type=MED&atom=%2Fcardiovascres%2F100%2F2%2F231.atom

    [58] Bossi M, Fölling J, Belov V N et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species[J]. Nano Letters, 8, 2463-2468(2008).

    [59] Tam J, Cordier G A, Borbely J S et al. Cross-talk-free multi-color STORM imaging using a single fluorophore[J]. PLoS One, 9, e101772(2014). http://europepmc.org/abstract/MED/25000286

    [60] Jungmann R, Avendaño M S, Woehrstein J B et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT[J]. Nature Methods, 11, 313-318(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC4153392/

    [61] Zhang Z Y, Kenny S J, Hauser M et al. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy[J]. Nature Methods, 12, 935-938(2015). http://www.ncbi.nlm.nih.gov/pubmed/26280329

    [62] Dong B Q, Almassalha L, Urban B E et al. Super-resolution spectroscopic microscopy via photon localization[J]. Nature Communications, 7, 12290(2016). http://www.nature.com/articles/ncomms12290

    [63] Shechtman Y, Weiss L E, Backer A S et al. Multicolour localization microscopy by point-spread-function engineering[J]. Nature Photonics, 10, 590-594(2016). http://www.ncbi.nlm.nih.gov/pubmed/28413434

    [64] Xu K, Babcock H P, Zhuang X W. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 9, 185-188(2012). http://europepmc.org/abstract/MED/22231642

    [65] Szymborska A, de Marco A, Daigle N et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging[J]. Science, 341, 655-658(2013). http://europepmc.org/abstract/MED/23845946

    [66] Gu L S, Li Y Y, Zhang S W et al. Molecular resolution imaging by repetitive optical selective exposure[J]. Nature Methods, 16, 1114-1118(2019). http://www.nature.com/articles/s41592-019-0544-2

    [67] Cnossen J, Hinsdale T, Thorsen R Ø et al. Localization microscopy at doubled precision with patterned illumination[J]. Nature Methods, 17, 59-63(2020).

    [68] Chen F, Tillberg P W, Boyden E S. Expansion microscopy[J]. Science, 347, 543-548(2015).

    [69] Zwettler F U, Reinhard S, Gambarotto D et al. Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM)[J]. Nature Communications, 11, 3388(2020). http://www.nature.com/articles/s41467-020-17086-8?proof=t

    [70] Pavani S R P, Thompson M A, Biteen J S et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 2995-2999(2009).

    [71] Shtengel G, Galbraith J A, Galbraith C G et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure[J]. Proceedings of the National Academy of Sciences, 106, 3125-3130(2009). http://www.ncbi.nlm.nih.gov/pubmed?term=19202073

    [72] Li Y M, Mund M, Hoess P et al. Real-time 3D single-molecule localization using experimental point spread functions[J]. Nature Methods, 15, 367-369(2018).

    [73] Gu L S, Li Y Y, Zhang S W et al. Molecular-scale axial localization by repetitive optical selective exposure[J]. Nature Methods, 18, 369-373(2021). http://www.nature.com/articles/s41592-021-01099-2

    [74] Ma H Q, Liu Y. Super-resolution localization microscopy: toward high throughput, high quality, and low cost[J]. APL Photonics, 5, 060902(2020). http://www.researchgate.net/publication/342435178_Super-resolution_localization_microscopy_Toward_high_throughput_high_quality_and_low_cost

    [75] Douglass K M, Sieben C, Archetti A et al. Super-resolution imaging of multiple cells byoptimised flat-field epi-illumination[J]. Nature Photonics, 10, 705-708(2016).

    [76] Zhao Z Y, Xin B, Li L C et al. High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view[J]. Optics Express, 25, 13382-13395(2017).

    [77] Diekmann R, Helle Ø I, Øie C I et al. Chip-based wide field-of-view nanoscopy[J]. Nature Photonics, 11, 322-328(2017). http://www.nature.com/articles/nphoton.2017.55

    [78] Helle Ø I, Coucheron D A, Tinguely J C et al. Nanoscopy on-a-chip: super-resolution imaging on the millimeter scale[J]. Optics Express, 27, 6700-6710(2019). http://www.researchgate.net/publication/331284762_Nanoscopy_on-a-chip_Super-resolution_imaging_on_the_millimeter_scale

    [79] Archetti A, Glushkov E, Sieben C et al. Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging[J]. Nature Communications, 10, 1267(2019). http://www.ncbi.nlm.nih.gov/pubmed/30894525

    [80] Li L C, Xin B, Kuang W B et al. Divide and conquer: real-time maximum likelihood fitting of multiple emitters for super-resolution localization microscopy[J]. Optics Express, 27, 21029-21049(2019).

    [81] Jia S, Vaughan J C, Zhuang X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function[J]. Nature Photonics, 8, 302-306(2014). http://www.sciencedirect.com/science/article/pii/S0006349512049338

    [82] Burke D, Patton B, Huang F et al. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy[J]. Optica, 2, 177-185(2015). http://jmicro.oxfordjournals.org/external-ref?access_num=10.1364/OPTICA.2.000177&link_type=DOI

    [83] Huang F, Sirinakis G, Allgeyer E S et al. Ultra-high resolution 3D imaging of whole cells[J]. Cell, 166, 1028-1040(2016). http://www.cell.com/fulltext/S0092-8674(16)30745-0

    [84] Mlodzianoski M J, Cheng-Hathaway P J, Bemiller S M et al. Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections[J]. Nature Methods, 15, 583-586(2018).

    [85] Kim J, Wojcik M, Wang Y et al. Oblique-plane single-molecule localization microscopy for tissues and small intact animals[J]. Nature Methods, 16, 853-857(2019). http://www.nature.com/articles/s41592-019-0589-2

    [86] Xu F, Ma D H, MacPherson K P et al. Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval[J]. Nature Methods, 17, 531-540(2020).

    [87] Huisken J, Swoger J, del Bene F et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy[J]. Science, 305, 1007-1009(2004).

    [88] Crossman D J, Hou Y F, Jayasinghe I et al. Combining confocal and single molecule localisation microscopy: a correlative approach to multi-scale tissue imaging[J]. Methods, 88, 98-108(2015).

    [89] Dudok B, Barna L, Ledri M et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling[J]. Nature Neuroscience, 18, 75-86(2015).

    [90] Moon S, Yan R, Kenny S J et al. Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes[J]. Journal of the American Chemical Society, 139, 10944-10947(2017). http://pubs.acs.org/doi/10.1021/jacs.7b03846

    [91] Xiang L M, Wojcik M, Kenny S J et al. Optical characterization of surface adlayers and their compositional demixing at the nanoscale[J]. Nature Communications, 9, 1435(2018). http://www.nature.com/articles/s41467-018-03820-w

    [92] Hauser M, Wojcik M, Kim D et al. Correlative super-resolution microscopy: new dimensions and new opportunities[J]. Chemical Reviews, 117, 7428-7456(2017). http://www.ncbi.nlm.nih.gov/pubmed/28045508/

    [93] Watanabe S, Punge A, Hollopeter G et al. Protein localization in electron micrographs using fluorescence nanoscopy[J]. Nature Methods, 8, 80-84(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3059187/

    [94] Kopek B G, Shtengel G, Xu C S et al. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 6136-6141(2012).

    [95] Suleiman H, Zhang L, Roth R et al. Nanoscale protein architecture of the kidney glomerular basement membrane[J]. eLife, 2, e01149(2013). http://europepmc.org/articles/PMC3790497/

    [96] Kim D, Deerinck T J, Sigal Y M et al. Correlative stochastic optical reconstruction microscopy and electron microscopy[J]. PLoS One, 10, e0124581(2015). http://europepmc.org/abstract/MED/25874453

    [97] Wojcik M, Hauser M, Li W et al. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells[J]. Nature Communications, 6, 7384(2015). http://www.sciencedirect.com/science/article/pii/S000634951502055X

    [98] Hoffman D P, Shtengel G, Xu C S et al. Correlative three-dimensional super-resolution and block face electron microscopy of whole vitreously frozen cells[J]. Science, 367, eaaz5357(2020).

    [99] Duim W C, Chen B, Frydman J et al. Sub-diffraction imaging of huntingtin protein aggregates by fluorescence blink-microscopy and atomic force microscopy[J]. Chemphyschem, 12, 2387-2390(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3387990/

    [100] Odermatt P D, Shivanandan A, Deschout H et al. High-resolution correlative microscopy:bridging the gap between single molecule localization microscopy and atomic force microscopy[J]. Nano Letters, 15, 4896-4904(2015). http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA2NjE0YzJlYzA5NGQ2NjNiM2E4NWIzOGUwM2RjNmJkNBoIanh0M2x6ZWg%3D

    [101] Zhou L L, Gao J, Wang H L et al. Correlative dual-color dSTORM/AFM reveals protein clusters at the cytoplasmic side of human bronchial epithelium membranes[J]. Nanoscale, 12, 9950-9957(2020). http://pubs.rsc.org/en/content/articlelanding/2020/nr/c9nr10931e

    [102] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [103] Ouyang W, Aristov A, Lelek M et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 36, 460-468(2018). http://www.ncbi.nlm.nih.gov/pubmed/29658943

    [104] Nehme E, Weiss L E, Michaeli T et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 5, 458-464(2018). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-5-4-458

    [105] Hershko E, Weiss L E, Michaeli T et al. Multicolor localization microscopy and point-spread-function engineering by deep learning[J]. Optics Express, 27, 6158-6183(2019). http://www.researchgate.net/publication/331240383_Multicolor_localization_microscopy_and_point-spread-function_engineering_by_deep_learning

    [106] Kim T, Moon S, Xu K. Information-rich localization microscopy through machine learning[J]. Nature Communications, 10, 1996(2019).

    [107] Nehme E, Freedman D, Gordon R et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning[J]. Nature Methods, 17, 734-740(2020).

    [108] Khater I M, Nabi I R, Hamarneh G. A review of super-resolution single-molecule localization microscopy clusteranalysis and quantification methods[J]. Patterns, 1, 100038(2020). http://www.sciencedirect.com/science/article/pii/S266638992030043X

    [109] Ripley B D. Modelling spatial patterns[J]. Journal of the Royal Statistical Society: Series B (Methodological), 39, 172-192(1977).

    [110] Kiskowski M A, Hancock J F, Kenworthy A K. On the use of Ripley’s K-function and its derivatives to analyze domain size[J]. Biophysical Journal, 97, 1095-1103(2009). http://www.sciencedirect.com/science/article/pii/S0006349509010480

    [111] Besag J. Discussion on Dr Ripley’s paper[J]. Journal of the Royal Statistical Society: Series B (Methodological), 39, 192-212(1977).

    [112] Ehrlich M, Boll W, van Oijen A et al. Endocytosis by random initiation and stabilization of clathrin-coated pits[J]. Cell, 118, 591-605(2004).

    [113] Burgert A, Schlegel J, Bécam J et al. Characterization of plasma membrane ceramides by super-resolution microscopy[J]. Angewandte Chemie, 56, 6131-6135(2017).

    [114] Lopes F B, Bálint Š, Valvo S et al. Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages[J]. Journal of Cell Biology, 216, 1123-1141(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=661578ee49e3dcce15f25ff0a339aec6

    [115] Yan Q, Lu Y, Zhou L et al. Mechanistic insights into GLUT1 activation and clustering revealed by super-resolution imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 7033-7038(2018). http://europepmc.org/abstract/MED/29915035

    [116] Sengupta P, Jovanovic-Talisman T, Skoko D et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis[J]. Nature Methods, 8, 969-975(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3400087/

    [117] Sengupta P, Jovanovic-Talisman T, Lippincott-Schwartz J. Quantifying spatial organization in point-localization superresolution images using pair correlation analysis[J]. Nature Protocols, 8, 345-354(2013).

    [118] Dixon P M. Ripley’s K function[M](2014).

    [119] Wang F, Liu Y H, Zhang T et al. Aging-associated changes in CD47 arrangement and interaction with thrombospondin-1 on red blood cells visualized by super-resolution imaging[J]. Aging Cell, 19, e13224(2020). http://onlinelibrary.wiley.com/doi/10.1111/acel.13224

    [120] Rey-Suarez I, Wheatley B A, Koo P et al. WASP family proteins regulate the mobility of the B cell receptor during signaling activation[J]. Nature Communications, 11, 439(2020). http://www.nature.com/articles/s41467-020-14335-8?utm_source=other&utm_medium=other&utm_content=null

    [121] Xu K, Zhong G S, Zhuang X W. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 339, 452-456(2013). http://www.ncbi.nlm.nih.gov/pubmed/23239625

    [122] Han B R, Zhou R B, Xia C L et al. Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons[J]. Proceedings of the National Academy of Sciences, 114, E6678-E6685(2017). http://europepmc.org/abstract/MED/28739933

    [123] Pan L T, Yan R, Li W et al. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton[J]. Cell Reports, 22, 1151-1158(2018). http://www.sciencedirect.com/science/article/pii/S2211124717319599

    [124] Rubin-Delanchy P, Burn G L, Griffié J et al. Bayesian cluster identification in single-molecule localization microscopy data[J]. Nature Methods, 12, 1072-1076(2015).

    [125] Griffié J, Shlomovich L, Williamson D J et al. 3D Bayesian cluster analysis of super-resolution data reveals LAT recruitment to the T cell synapse[J]. Scientific Reports, 7, 4077(2017). http://europepmc.org/articles/PMC5481387/

    [126] Ester M, Kriegel H P, Sander J et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]. //Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, August 2, 1996, Virigina, USA., 96, 226-231(1996).

    [127] Dunster J L, Unsworth A J, Bye A P et al. Interspecies differences in protein expression do not impact the spatiotemporal regulation of glycoprotein VI mediated activation[J]. Journal of Thrombosis and Haemostasis, 18, 485-496(2020). http://www.ingentaconnect.com/content/bsc/jth/2020/00000018/00000002/art00024

    [128] Mazouchi A, Milstein J N. Fastoptimized cluster algorithm for localizations (FOCAL): a spatial cluster analysis for super-resolved microscopy[J]. Bioinformatics, 32, 747-754(2016).

    [129] Nino D F, Djayakarsana D, Milstein J N. FOCAL3D: a 3-dimensional clustering package for single-molecule localization microscopy[J]. PLoS Computational Biology, 16, e1008479(2020). http://www.researchgate.net/publication/347459327_FOCAL3D_A_3-dimensional_clustering_package_for_single-molecule_localization_microscopy

    [130] Aurenhammer F. Voronoi diagrams: a survey of a fundamental geometric data structure[J]. ACM Computing Surveys, 23, 345-405(1991). http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1145/116873.116880&rfr_id=trans/td/1997/11/ttd1997111133.htm

    [131] Levet F, Hosy E, Kechkar A et al. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data[J]. Nature Methods, 12, 1065-1071(2015). http://europepmc.org/abstract/MED/26344046

    [132] Platre M P, Bayle V, Armengot L et al. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine[J]. Science, 364, 57-62(2019).

    [133] Wei M, Fan X Y, Ding M et al. Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering[J]. Science Advances, 6, eaay6515(2020).

    [134] Levet F, Julien G, Galland R et al. A tessellation-based colocalization analysis approach for single-molecule localization microscopy[J]. Nature Communications, 10, 2379(2019). http://www.nature.com/articles/s41467-019-10007-4

    [135] Golfetto O, Wakefield D L, Cacao E E et al. A platform to enhance quantitative single molecule localization microscopy[J]. Journal of the American Chemical Society, 140, 12785-12797(2018).

    [136] Annibale P, Vanni S, Scarselli M et al. Identification of clustering artifacts in photoactivated localization microscopy[J]. Nature Methods, 8, 527-528(2011). http://www.ncbi.nlm.nih.gov/pubmed/21666669

    [137] Lee S H, Shin J Y, Lee A et al. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM)[J]. Proceedings of the National Academy of Sciences, 109, 17436-17441(2012). http://www.pnas.org/content/109/43/17436/suppl/dcsupplemental

    [138] Puchner E M, Walter J M, Kasper R et al. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory[J]. Proceedings of the National Academy of Sciences, 110, 16015-16020(2013). http://europepmc.org/articles/PMC3791776

    [139] Zanacchi F C, Manzo C, Alvarez A S et al. A DNA origami platform for quantifying protein copy number in super-resolution[J]. Nature Methods, 14, 789-792(2017).

    [140] Baumgart F, Arnold A M, Leskovar K et al. Varying label density allows artifact-free analysis of membrane-protein nanoclusters[J]. Nature Methods, 13, 661-664(2016).

    [141] Bálint Š, Lopes F B, Davis D M. A nanoscale reorganization of the IL-15 receptor is triggered by NKG2D in a ligand-dependent manner[J]. Science Signaling, 11, eaal3606(2018).

    [142] Zhong G, He J, Zhou R et al. Developmental mechanism of the periodic membrane skeleton in axons[J]. eLife, 3, e04581(2014). http://europepmc.org/articles/PMC4337613/

    [143] He J, Zhou R B, Wu Z H et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 6029-6034(2016). http://www.ncbi.nlm.nih.gov/pubmed/27162329

    [144] Zhou R B, Han B R, Xia C L et al. Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons[J]. Science, 365, 929-934(2019). http://www.researchgate.net/publication/335478029_Membrane-associated_periodic_skeleton_is_a_signaling_platform_for_RTK_transactivation_in_neurons

    [145] Pan L T, Zhang P, Hu F et al. Hypotonic stress induces fast, reversible degradation of the vimentin cytoskeleton via intracellular calcium release[J]. Advanced Science, 6, 1900865(2019).

    [146] Kanchanawong P, Shtengel G, Pasapera A M et al. Nanoscale architecture of integrin-based cell adhesions[J]. Nature, 468, 580-584(2010).

    [147] Nahidiazar L, Kreft M, van den Broek B et al. The molecular architecture of hemidesmosomes, as revealed with super-resolution microscopy[J]. Journal of Cell Science, 128, 3714-3719(2015).

    [148] Bouissou A, Proag A, Bourg N et al. Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring[J]. ACS Nano, 11, 4028-4040(2017).

    [149] Shi X Y, Garcia G, van de Weghe J C et al. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome[J]. Nature Cell Biology, 19, 1178-1188(2017).

    [150] Goliand I, Adar-Levor S, Segal I et al. Resolving ESCRT-III spirals at the intercellular bridge of dividing cells using 3D STORM[J]. Cell Reports, 24, 1756-1764(2018). http://www.sciencedirect.com/science/article/pii/S2211124718311549

    [151] Sherman E, Barr V, Manley S et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor[J]. Immunity, 35, 705-720(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3225724/

    [152] Wu Y, Kanchanawong P, Zaidel-Bar R. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions[J]. Developmental Cell, 32, 139-154(2015). http://europepmc.org/abstract/med/25600236

    [153] Gao J, Wang Y, Cai M et al. Mechanistic insights into EGFR membrane clustering revealed by super-resolution imaging[J]. Nanoscale, 7, 2511-2519(2015). http://europepmc.org/abstract/med/25569174

    [154] Lee S H, Jin C, Cai E et al. Super-resolution imaging of synaptic and extra-synaptic AMPA receptors with different-sized fluorescent probes[J]. eLife, 6, e27744(2017). http://www.ncbi.nlm.nih.gov/pubmed/28749340

    [155] Jayasinghe I, Clowsley A H, Lin R et al. True molecular scale visualization of variable clustering properties of ryanodine receptors[J]. Cell Reports, 22, 557-567(2018). http://www.sciencedirect.com/science/article/pii/S2211124717318697

    [156] Shen X, van den Brink J, Hou Y et al. 3D dSTORM imaging reveals novel detail of ryanodine receptor localization in rat cardiac myocytes[J]. The Journal of Physiology, 597, 399-418(2019). http://www.ingentaconnect.com/content/bsc/tjp/2019/00000597/00000002/art00012

    [157] Jing Y, Zhou L, Chen J et al. Quantitatively mapping the assembly pattern of EpCAM on cell membranes with peptide probes[J]. Analytical Chemistry, 92, 1865-1873(2020). http://www.researchgate.net/publication/338176595_Quantitatively_Mapping_the_Assembly_Pattern_of_EpCAM_on_Cell_Membranes_with_Peptide_Probes

    [158] Shim S H, Xia C, Zhong G et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 13978-13983(2012). http://europepmc.org/abstract/MED/22891300

    [159] French J B, Jones S A, Deng H et al. Spatial colocalization and functional link of purinosomes with mitochondria[J]. Science, 351, 733-737(2016).

    [160] Chen C, Zong S F, Wang Z Y et al. Imaging and intracellular tracking of cancer-derived exosomes using single-molecule localization-based super-resolution microscope[J]. ACS Applied Materials & Interfaces, 8, 25825-25833(2016). http://pubs.acs.org/doi/10.1021/acsami.6b09442

    [161] Georgiades P, Allan V J, Wright G D et al. The flexibility and dynamics of the tubules in the endoplasmic reticulum[J]. Scientific Reports, 7, 16474(2017). http://www.nature.com/articles/s41598-017-16570-4

    [162] Bintu B, Mateo L J, Su J H et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells[J]. Science, 362, eaau1783(2018).

    [163] Mateo L J, Murphy S E, Hafner A et al. Visualizing DNA folding and RNA in embryos at single-cell resolution[J]. Nature, 568, 49-54(2019). http://www.ncbi.nlm.nih.gov/pubmed/30886393

    [164] Xiang L M, Chen K, Yan R et al. Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity[J]. Nature Methods, 17, 524-530(2020). http://www.ncbi.nlm.nih.gov/pubmed/32203387

    [165] Yan R, Chen K, Xu K. Probing nanoscale diffusional heterogeneities in cellular membranes through multidimensional single-molecule and super-resolution microscopy[J]. Journal of the American Chemical Society, 142, 18866-18873(2020).

    [166] Li H L, Vaughan J C. Switchable fluorophores for single-molecule localization microscopy[J]. Chemical Reviews, 118, 9412-9454(2018). http://pubs.acs.org/doi/10.1021/acs.chemrev.7b00767

    Jianyu Yang, Hao Dong, Fulin Xing, Fen Hu, Leiting Pan, Jingjun Xu. Single-Molecule Localization Super-Resolution Microscopy and Its Applications[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1200001
    Download Citation