• Acta Optica Sinica
  • Vol. 40, Issue 23, 2323001 (2020)
Yuanyuan Liu, Huan Liu, Kun Liu, and Lu Zhu*
Author Affiliations
  • School of Information Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
  • show less
    DOI: 10.3788/AOS202040.2323001 Cite this Article Set citation alerts
    Yuanyuan Liu, Huan Liu, Kun Liu, Lu Zhu. Ultra-broadband Perfect Absorber with Rectangular Multilayer Structure[J]. Acta Optica Sinica, 2020, 40(23): 2323001 Copy Citation Text show less
    References

    [1] Cong L, Tan S, Yahiaoui R et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces[J]. Applied Physics Letters, 106, 031107(2015).

    [2] Tan S Y, Yan F P, Wang W et al. Ultrasensitive sensing with three-dimensional terahertz metamaterial absorber[J]. Journal of Optics, 20, 055101(2018). http://www.researchgate.net/publication/323758487_Ultrasensitive_sensing_with_three-dimensional_terahertz_metamaterial_absorber

    [3] Gao E D, Liu Z M, Li H J et al. Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial[J]. Optics Express, 27, 13884-13894(2019).

    [4] Li M L, Muneer B, Yi Z X et al. A broadband compatible multispectral metamaterial absorber for visible, near-infrared, and microwave bands[J]. Advanced Optical Materials, 6, 1701238(2018).

    [5] Cao S, Yu W, Wang T et al. Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption[J]. Applied Physics Letters, 102, 161109(2013).

    [6] Takatori K, Okamoto T, Ishibashi K. Surface-plasmon-induced ultra-broadband light absorber operating in the visible to infrared range[J]. Optics Express, 26, 1342-1350(2018).

    [7] Liu Z M, Gao E D, Zhang X et al. Terahertz electro-optical multi-functional modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip[J]. New Journal of Physics, 22, 053039(2020). http://www.researchgate.net/publication/340212944_Terahertz_electro-optical_multi-functions_modulator_and_its_coupling_mechanisms_based_on_upper-layer_double_graphene_ribbons_and_lower-layer_a_graphene_strip/download

    [8] Chen Y F, Xue W R, Zhao C et al. Grating-type mid-infrared absorber based on hexagonal boron nitride material[J]. Acta Optica Sinica, 39, 1005001(2019).

    [9] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [10] Zhou Y, Liang Z Z, Qin Z et al. Small-sized long wavelength infrared absorber with perfect ultra-broadband absorptivity[J]. Optics Express, 28, 1279-1290(2020).

    [11] Abbas M N, Cheng C W, Chang Y et al. Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2[J]. Applied Physics Letters, 98, 121116(2011).

    [12] Cui Y X, Fung K H, Xu J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 12, 1443-1447(2012).

    [13] Li Y Y, Chen Q Q, Wu B et al. Broadband perfect metamaterial absorber based on the gallium arsenide grating complex structure[J]. Results in Physics, 15, 102760(2019).

    [14] Chen X, Xue W R, Zhao C et al. Ultra-broadband infrared absorber based on LiF and NaF[J]. Acta Optica Sinica, 38, 0123002(2018).

    [15] Huang Y Q, Li Y, Li Z P et al. Tunable mid-infrared broadband absorber based on W/VO2 square nano-pillar array[J]. Acta Optica Sinica, 39, 0316001(2019).

    [16] Aydin K, Ferry V E, Briggs R M et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications, 2, 517(2011).

    [17] Hu D, Wang H Y, Zhu Q F. Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator[J]. Journal of Nanophotonics, 10, 026021(2016).

    [18] Ghobadi A, Hajian H, Gokbayrak M et al. Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity[J]. Optics Express, 25, 27624-27634(2017).

    [19] Liu Y Y, Xiong G, Wang Y et al. Design of multi resonant U shaped slots nano-antenna and their absorption properties[J]. Optics and Precision Engineering, 25, 2155-2164(2017).

    [20] Fang Z Y, Fan L R, Lin C F et al. Plasmonic coupling of bow tie antennas with Ag nanowire[J]. Nano Letters, 11, 1676-1680(2011).

    [21] Fang Z, Zhen Y R, Fan L et al. Tunable wide-angle plasmonic perfect absorber at visible frequencies[J]. Physical Review B, 85, 245401(2012). http://adsabs.harvard.edu/abs/2012PhRvB..85x5401F

    [22] Ding F, Jin Y, Li B R et al. Ultrabroadband strong light absorption based on thin multilayered metamaterials[J]. Laser & Photonics Reviews, 8, 946-953(2014).

    [23] Cong J W, Zhou Z Q, Yun B F et al. Broadband visible-light absorber via hybridization of propagating surface plasmon[J]. Optics Letters, 41, 1965-1968(2016).

    [24] Zhu L, Wang Y, Xiong G et al. Design and absorption characteristics of broadband nano-metamaterial solar absorber[J]. Acta Optica Sinica, 37, 0923001(2017).

    [25] Hoa N T Q, Lam P H, Tung P D et al. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region[J]. IEEE Photonics Journal, 11, 18371499(2019).

    [26] Wu D, Liu C, Liu Y et al. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion[J]. RSC Advances, 8, 21054-21064(2018). http://pubs.rsc.org/en/content/articlehtml/2018/ra/c8ra01524d

    [27] Kan Y, Zhao C, Fang X et al. Designing ultrabroadband absorbers based on Bloch theorem and optical topological transition[J]. Optics Letters, 42, 1879-1882(2017).

    [29] Palik E D[M]. Handbook of optical constants of solids Ⅱ(1997).

    [30] Lei L, Li S, Huang H X et al. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial[J]. Optics Express, 26, 5686-5693(2018).

    [31] Wu D, Liu C, Liu Y M et al. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region[J]. Optics Letters, 42, 450-453(2017).

    [32] Liu J Q, Wang L L, He M D et al. A wide bandgap plasmonic Bragg reflector[J]. Optics Express, 16, 4888-4894(2008).

    [33] Bozhevolnyi S I, Søndergaard T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators[J]. Optics Express, 15, 10869-10877(2007).

    [34] Jung J, Sondergaard T, Bozhevolnyi S I. Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons[J]. Physical Review B, 79, 035401(2009).

    [35] Smith D R. McCall S L, Platzman P M, et al. Photonic band structure and defects in one and two dimensions[J]. Journal of the Optical Society of America B, 10, 314-321(1993).

    [36] Smith D R, Vier D C, Koschny T et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, 71, 036617(2005). http://www.ncbi.nlm.nih.gov/pubmed/15903615/

    [37] Qin F, Chen X F, Yi Z et al. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure[J]. Solar Energy Materials and Solar Cells, 211, 110535(2020).

    [38] Li Y Y, Liu Z Q, Zhang H J et al. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks[J]. Optics Express, 27, 11809-11818(2019).

    [39] Wang Y, Xuan X F, Zhu L et al. Multilayer rectangular broadband metamaterial absorber[J]. Acta Optica Sinica, 40, 1523001(2020).

    [40] Ding F, Jin Y, Li B R et al. Ultrabroadband strong light absorption based on thin multilayered metamaterials[J]. Laser & Photonics Reviews, 8, 946-953(2014).

    Yuanyuan Liu, Huan Liu, Kun Liu, Lu Zhu. Ultra-broadband Perfect Absorber with Rectangular Multilayer Structure[J]. Acta Optica Sinica, 2020, 40(23): 2323001
    Download Citation