• Acta Optica Sinica
  • Vol. 40, Issue 23, 2323001 (2020)
Yuanyuan Liu, Huan Liu, Kun Liu, and Lu Zhu*
Author Affiliations
  • School of Information Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
  • show less
    DOI: 10.3788/AOS202040.2323001 Cite this Article Set citation alerts
    Yuanyuan Liu, Huan Liu, Kun Liu, Lu Zhu. Ultra-broadband Perfect Absorber with Rectangular Multilayer Structure[J]. Acta Optica Sinica, 2020, 40(23): 2323001 Copy Citation Text show less
    Absorber structure. (a) Array structure; (b) unit side view
    Fig. 1. Absorber structure. (a) Array structure; (b) unit side view
    Absorption characteristics of rectangular multilayer absorber. (a) Absorption curves of absorbers with different structures; (b) absorption spectra of MSSA structures at different polarization angles
    Fig. 2. Absorption characteristics of rectangular multilayer absorber. (a) Absorption curves of absorbers with different structures; (b) absorption spectra of MSSA structures at different polarization angles
    Distribution of |E| and Ezreal at different wavelengths. (a) 730 nm; (b) 1165 nm; (c) 2005 nm; (d) 3295 nm
    Fig. 3. Distribution of |E| and Ezreal at different wavelengths. (a) 730 nm; (b) 1165 nm; (c) 2005 nm; (d) 3295 nm
    Distribution of |H| at different wavelengths. (a) 730 nm; (b) 1165 nm; (c) 2005 nm; (d) 3295 nm
    Fig. 4. Distribution of |H| at different wavelengths. (a) 730 nm; (b) 1165 nm; (c) 2005 nm; (d) 3295 nm
    Performance curves of different metal materials. (a) Absorption rate; (b) structural impedance
    Fig. 5. Performance curves of different metal materials. (a) Absorption rate; (b) structural impedance
    Performance curves of different non-metallic materials. (a) Absorption rate; (b) average absorption rate
    Fig. 6. Performance curves of different non-metallic materials. (a) Absorption rate; (b) average absorption rate
    Influence of different parameters on absorption performance of absorber and its average absorption rate. (a) P; (b) w1; (c) w2; (d) h1; (e) h2
    Fig. 7. Influence of different parameters on absorption performance of absorber and its average absorption rate. (a) P; (b) w1; (c) w2; (d) h1; (e) h2
    Influence of incident angle on absorber absorption rate under different polarization modes. TM mode (a) absorption spectrum, (c) absorption curves; TE mode (b) absorption spectrum, (d) absorption curves
    Fig. 8. Influence of incident angle on absorber absorption rate under different polarization modes. TM mode (a) absorption spectrum, (c) absorption curves; TE mode (b) absorption spectrum, (d) absorption curves
    ParameterPw1w2hh1h2h3
    Value /nm4403001902003013050
    Table 1. Parameter setting of absorber structure
    StructureWavelength /nmBandwidth /%Average absorption /%Polarization insensitiveNoble metal
    Ref. [23]400-7506195.0/Yes
    Ref. [26]260-128013298.9YesNo
    Ref. [27]400-200013395.0YesNo
    Ref. [37]516-2696136/YesYes
    Ref. [38]570-353914597.0YesNo
    Ref. [39]400-1400/95.0YesYes
    Proposed440-350015597.3YesNo
    Table 2. Comparison of absorption performance of different metal materials
    Yuanyuan Liu, Huan Liu, Kun Liu, Lu Zhu. Ultra-broadband Perfect Absorber with Rectangular Multilayer Structure[J]. Acta Optica Sinica, 2020, 40(23): 2323001
    Download Citation