• Acta Optica Sinica
  • Vol. 42, Issue 9, 0901002 (2022)
Chenxiang Qiu1、2、3, Zaihong Hou1、3, Xu Jing1、3、*, Feng He1、3, and Silong Zhang1、3
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, Anhui, China
  • 3Anhui Laboratory of Advanced Laser Technology, Hefei 230037, Anhui, China
  • show less
    DOI: 10.3788/AOS202242.0901002 Cite this Article Set citation alerts
    Chenxiang Qiu, Zaihong Hou, Xu Jing, Feng He, Silong Zhang. Turbulence Models and Daily Variations Obtained by Bidirectional Atmospheric Coherent Length Measurements[J]. Acta Optica Sinica, 2022, 42(9): 0901002 Copy Citation Text show less
    References

    [1] Wang Y J, Fan C Y, Wei H L[M]. Laser beam propagation and applications through the atmosphere and sea water(2015).

    [2] Jing X, Wu Y, Hou Z H et al. Study of irradiance fluctuations for laser beam propagation in atmosphere[J]. Acta Optica Sinica, 30, 3110-3116(2010).

    [3] Wu L, Ying J J, Geng B. Effect on laser propagation in the atmospheric turbulence[J]. Laser & Infrared, 38, 974-977(2008).

    [4] Rao R Z[M]. Morden atmospheric optics(2012).

    [5] Tatarskii V I. Wave propagation in turbulent medium[M]. New York: McGraw-Hill(1961).

    [6] Zhang L J, Li D M, Yang J H[M]. Image restoration of atmospheric turbulence degradation based on adaptive optics(2017).

    [7] Xie M T, Li J H, Xu Z Y et al. Performance analysis for modulating retro-reflector FSO communications in weak turbulent atmosphere on slant path[J]. Acta Optica Sinica, 41, 1801002(2021).

    [8] Cao M H, Wu X, Wang H Q et al. Performance of faster-than-nyquist optical communication system under Gamma-Gamma atmospheric turbulence[J]. Chinese Journal of Lasers, 47, 0906003(2020).

    [9] Chen M N, Jin X Q, Li S B et al. Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems[J]. Chinese Optics Letters, 19, 110601(2021).

    [10] Zhao Y G, Dong B, Liu M et al. Deep learning based computational ghost imaging alleviating the effects of atmospheric turbulence[J]. Acta Optica Sinica, 41, 1111001(2021).

    [11] Wu X Q, Zhu X T, Huang H H et al. Optical turbulence of atmospheric surface layer estimated based on the Monin-Obukhov similarity theory[J]. Acta Optica Sinica, 32, 0701004(2012).

    [12] Ma X S, Zhu W Y, Rao R Z. Comparison of refractive index structure constants of atmospheric turbulence deduced from scintillation and beam wander effects[J]. High Power Laser and Particle Beams, 19, 538-542(2007).

    [13] Moulsley T J, Asimakopoulos D N, Cole R S et al. Measurement of boundary layer structure parameter profiles by acoustic sounding and comparison with direct measurements[J]. Quarterly Journal of the Royal Meteorological Society, 107, 203-230(2007).

    [14] Vernin J, Roddier F. Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation evidence for a multilayer structure of the air turbulence in the upper troposphere[J]. Journal of the Optical Society of America, 63, 270-273(1973).

    [15] Tokovinin A, Baumont S, Vasquez J. Statistics of turbulence profile at Cerro Tololo[J]. Monthly Notices of the Royal Astronomical Society, 340, 52-58(2003).

    [16] Hickson P, Lanzetta K. Measuring atmospheric turbulence with a lunar scintillometer array[J]. Publications of the Astronomical Society of the Pacific, 116, 1143-1152(2004).

    [17] Jing X, Hou Z H, Qin L A et al. Measurement of whole layer atmospheric coherence length by observing stars in daytime[J]. Infrared and Laser Engineering, 40, 1352-1355(2011).

    [18] Jing X, Hou Z H, Wu Y et al. Development of a differential column image motion light detection and ranging for measuring turbulence profiles[J]. Optics Letters, 38, 3445-3447(2013).

    [19] Hufnagel R E, Stanley N R. Modulation transfer function associated with image transmission through turbulent media[J]. Journal of the Optical Society of America, 54, 52-61(1964).

    [20] Weng N Q, Zeng Z Y, Xiao L M et al. Profile and characteristic of refractive index structure constant[J]. High Power Laser & Particle Beams, 11, 673-676(1999).

    [21] Sun G, Weng N Q, Xiao L M et al. Profile and character of atmospheric structure constants of refractive index[J]. High Power Laser & Particle Beams, 17, 485-490(2005).

    [22] Sun G, Weng N Q, Xiao L M et al. Vertical distribution characteristics and models of atmospheric turbulence in representative area[J]. Journal of Atmospheric and Environmental Optics, 13, 425-435(2018).

    [23] Fried D L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures[J]. Journal of the Optical Society of America, 56, 1372-1379(1966).

    [24] Gimmestad G, Roberts D, Stewart J et al. Development of a lidar technique for profiling optical turbulence. [C]∥Imaging and Applied Optics 2014, July 13-17, Seattle, Washington. Washington, D.C.: OSA, JTu2C, 1(2014).

    [25] Sarazin M, Roddier F. The ESO differential image motion monitor[J]. Astronomy and Astrophysics, 227, 294-300(1990).

    [26] Sun G, Weng N Q, Xiao L M. Vertical distribution models of atmospheric structure constant of refractive index[J]. High Power Laser and Particle Beams, 20, 183-188(2008).

    [27] Luo X, Li X Y. Investigation on atmospheric optical turbulence profile statistical mode by stochastic parallel gradient descent algorithm[J]. Acta Optica Sinica, 32, 0901003(2012).

    Chenxiang Qiu, Zaihong Hou, Xu Jing, Feng He, Silong Zhang. Turbulence Models and Daily Variations Obtained by Bidirectional Atmospheric Coherent Length Measurements[J]. Acta Optica Sinica, 2022, 42(9): 0901002
    Download Citation