• Laser & Optoelectronics Progress
  • Vol. 54, Issue 12, 120003 (2017)
Chen Zhuo1, Zhang Dan1、*, and Wang Hailing2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.120003 Cite this Article Set citation alerts
    Chen Zhuo, Zhang Dan, Wang Hailing. Applications of Optical Fiber Sensing Technology Based on Molecular Imprinting[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120003 Copy Citation Text show less
    References

    [1] Turghun Muhammad. Application of fiber-optic sensing and molecular imprinted polymer fluorescence sensing membran in amiodarone assay[D]. Xinjiang: Xinjiang Medical University, 2006.

    [2] Shrivastav A M, Mishra S K, Gupta B D. Fiber optic SPR sensor for the detection of melamine using molecular imprinting[J]. Sensors & Actuators B: Chemical, 2015, 212: 404-410.

    [3] Ng S M, Narayanaswamy R. Fluorescence sensor using a molecularly imprinted polymer as a recognition receptor for the detection of aluminium ions in aqueous media[J]. Analytical and Bioanalytical Chemistry, 2006, 386(5):1235.

    [4] Boyd J W, Cobb G P, Southard G E, et al. Development of molecularly imprinted polymer sensors for chemical warfare agents[J]. Johns Hopkins Apl Technical Digest, 2004, 25(1): 44-49.

    [5] Prathish K P, Prasad K, Rao T P, et al. Molecularly imprinted polymer-based potentiometric sensor for degradation product of chemical warfare agents. Part I. Methylphosphonic acid[J]. Talanta, 2007, 71(5): 1976-1980.

    [6] Liang J H, Lou L. Progress and principle of molecular imprinting technique[J]. Journal of Chongqing University of Arts and Sciences (Natural Science Edition), 2009, 28(5): 38-43.

    [7] Ding Xiaoping, Wang Wei, Fu Lianchun. Classification and application principles of optical fibre transducer[J]. Spectroscopy and Spectral Analysis, 2006, 26(6): 1176-1178.

    [8] Haupt K. Peer reviewed: molecularly imprinted polymers: the next generation[J]. Analytical Chemistry, 2010, 75(17): 376A-383A.

    [9] Nguyen T H, Hardwick S A, Sun T, et al. Intrinsic fluorescence-based optical fiber sensor for cocaine using a molecularly imprinted polymer as the recognition element[J]. IEEE Sensors Journal, 2012, 12(1): 255-260.

    [10] Matsui J. Molecularly imprinted receptor having metalloporphyrin-based signaling binding site[J]. Analytical Communications, 1998, 35(7): 225-227.

    [11] Rachkov A, Mcniven S, El′Skaya A, et al. Fluorescence detection of β-estradiol using a molecularly imprinted polymer[J]. Analytica Chimica Acta, 2000, 405(1/2): 23-29.

    [12] Huang Y C, Lin C C, Liu C Y. Preparation and evaluation of molecularly imprinted polymers based on 9-ethyladenine for the recognition of nucleotide bases in capillary electrochromatography[J]. Electrophoresis, 2004, 25(4-5): 554-561.

    [13] Cennamo N, D′Agostino G, Galatus R, et al. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene[J]. Sensors & Actuators B: Chemical, 2013, 188(1): 221-226.

    [14] Cennamo N, Donà A, Pallavicini P, et al. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars[J]. Sensors & Actuators B: Chemical, 2015, 208: 291-298..

    [15] Verma R, Gupta B D.Fiber optic SPR sensor for the detection of 3-pyridinecarboxamide (vitamin B3) using molecularly imprinted hydrogel[J]. Sensors & Actuators B: Chemical, 2013, 177: 279-285.

    [16] Sandrine L, Anatoli I, Jacques A. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules[J]. Talanta, 2014, 128: 401-407.

    [17] Korposh S, Chianella I, Guerreiro A, et al. Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles[J]. Analyst, 2014, 139(9): 2229-2236.

    [18] Xiong Y, Zhou H, Zhang Z, et al. Flow-injection chemiluminescence sensor for determination of isoniazid in urine sample based on molecularly imprinted polymer[J]. Spectrochimica Acta, 2007, 66(2): 341-346.

    [19] Jenkins A L, Yin R, Jensen J L. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water[J]. Analyst, 2001, 126(6): 798-802.

    [20] Cennamo N, Testa G, Marchetti S, et al. Intensity-based plastic optical fiber sensor with molecularly imprinted polymer sensitive layer[J]. Sensors & Actuators B: Chemical, 2017, 241: 534-540.

    [21] Foguel M V, Ton X A, Zanoni M V B, et al. A molecularly imprinted polymer-based evanescent wave fiber optic sensor for the detection of basic red 9 dye[J]. Sensors & Actuators B: Chemical, 2015, 218: 222-228.

    [22] Yang Mei, Hou Changjun. Study on synthesis and characterization of molecularly imprinted polymers of streptomycin by surface imprinting polymerization[J]. Food industry and technology, 2012, 33(8): 155-158.

    [23] Hart S J. Dual-fiber optic capillary probe for fluorescence detection using molecularly imprinted polymers[C]. SPIE, 2001, 4201: 112-117.

    [24] Li Li. Study on the method for on-line determination propofol based on the fiber-optic sensing, the molecular imprinting technique and fluorescence analysis[D]. Xinjiang: Xinjiang Medical University, 2007.

    [25] Xiong Y, Ye Z, Xu J, et al. A microvolume molecularly imprinted polymer modified fiber-optic evanescent wave sensor for bisphenol A determination[J]. Analytical and Bioanalytical Chemistry, 2014, 406(9): 2411-2420.

    [26] Jing T, Wang Y, Dai Q, et al. Preparation of mixed-templates molecularly imprinted polymers and investigation of the recognition ability for tetracycline antibiotics[J]. Biosensors & Bioelectronics, 2010, 25(10): 2218-2224.

    [27] Lei J D, Tan T W. Enantioselective separation of naproxen and investigation of affinity chromatography model using molecular imprinting[J]. Biochemical Engineering Journal, 2002, 11(2): 175-179.

    [28] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting[J]. Analytical Chemistry, 1997, 69(69): 1179-1183.

    [29] Mayes A G, Mosbach K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase[J].Analytical Chemistry, 1996, 68(21): 3769-3774.

    [30] Zhou J, He X W, Guo H S. A molecularly imprinted polymer receptor for the enantiomeric recognition of amino acid hydantoins mimicking cooperative hydrogen bonds between nucleotide bases[J]. Chinese Journal of Chemistry, 2000, 18(4): 482-488.

    [31] Chen J, Bai L Y, Liu K F, et al. Atrazine molecular imprinted polymers: comparative analysis by far-infrared and ultraviolet induced polymerization[J]. International Journal of Molecular Sciences, 2014, 15(1): 574-587.

    [32] Jakusch M, Janotta M, Mizaikoff B, et al. Molecularly imprinted polymers and infrared evanescent wave spectroscopy[J]. Analytical Chemistry, 1999, 71(20): 4786-4791.

    [33] Kraft M, Jakusch M, Karlowatz M, et al. New frontiers for mid-infrared sensors: towards deep sea monitoring with a submarine FT-IR sensor system[J]. Applied Spectroscopy, 2003, 57(6): 591-599.

    [34] Duan M, Li X, Li L, et al. A novel chemiluminescence sensor for determination of vanillin with graphene oxide-magnetite-molecularly imprinted polymers[J]. Analytical Methods, 2014, 6(21): 8706-8712.

    [35] Gupta B D, Shrivastav A M, Usha S P.Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting[J]. Sensors, 2016, 16(9): 1381.

    [36] Knez K, Spasic D, Delport F, et al. Real-time ligation chain reaction for DNA quantification and identification on the FO-SPR[J]. Biosensors & Bioelectronics, 2015, 67: 394-399.

    [37] Cennamo N, Maria L D, D′Agostino G, et al. Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform[J]. Sensors, 2015, 15(4): 8499-8511.

    [38] Tabassum R, Gupta B D. SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations[J]. Optics Communications, 2016, 367: 23-34.

    [39] Petryayeva E, Krull U J. Localized surface plasmon resonance: nanostructures, bioassays and biosensing——a review[J]. Analytica Chimica Acta, 2011, 706(1): 8-24.

    [40] Mayer K M, Hafner J H.Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857.

    [41] Verma R, Gupta B D.Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting[J]. Analyst, 2013, 138(23): 7254-7263.

    [42] Shrivastav A M, Mishra S K, Gupta B D. Localized and propagating surface plasmon resonance based fiber optic sensor for the detection of tetracycline using molecular imprinting[J].Materials Research Express, 2015 (2): 035007.

    [43] Verma R, Gupta B D.Surface plasmon resonance based optical fiber riboflavin sensor by using molecularly imprinted gel[C]. SPIE, 2013, 87941: 87941D.

    [44] Cennamo N, D′Agostino G, Pesavento M, et al. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of I-nicotine[J]. Sensors & Actuators B: Chemical, 2014, 191(2): 529-536.

    [45] Shrivastav A M, Usha S P, Gupta B D. A localized and propagating SPR, and molecular imprinting based fiber-optic ascorbic acid sensor using an in situ polymerized polyaniline-Ag nanocomposite[J]. Nanotechnology, 2016, 27(34): 345501.

    [46] Shrivastav A M, Mishra S K, Gupta B D. Surface plasmon resonance-based fiber optic sensor for the detection of ascorbic acid utilizing molecularly imprinted polyaniline film[J]. Plasmonics, 2015, 10(6): 1853-1861.

    [47] Gupta B D, Shrivastav A M, Usha S P. Fiber optic SPR nanosensor for erythromycin detection using molecularly imprinted nanoparticles[C]. CLEO: Science and Innovations, 2016: SM4P.7.

    [48] Lepinay S, Staff A, Ianoul A, et al. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles[J]. Biosensors & Bioelectronics, 2014, 52(4): 337-344.

    [49] González-Vila, Debliquy M, Lahem D, et al. Molecularly imprinted electropolymerization on a metal-coated optical fiber for gas sensing applications[J]. Sensors & Actuators B: Chemical, 2017, 244: 1145-1151.

    [50] Cennamo N, D′Agostino G, Donà A, et al. Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation[J]. Sensors, 2013, 13(11): 14676-14686.

    Chen Zhuo, Zhang Dan, Wang Hailing. Applications of Optical Fiber Sensing Technology Based on Molecular Imprinting[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120003
    Download Citation