• Acta Optica Sinica
  • Vol. 40, Issue 13, 1324002 (2020)
Da Teng1、*, Wenshuai Ma1, Yandie Yang1, Jinkang Guo1, and Kai Wang2、**
Author Affiliations
  • 1School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044, China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    DOI: 10.3788/AOS202040.1324002 Cite this Article Set citation alerts
    Da Teng, Wenshuai Ma, Yandie Yang, Jinkang Guo, Kai Wang. Study on Subwavelength Transmission Properties of Triangular-Shaped Graphene-Coated Nanowires on Substrate[J]. Acta Optica Sinica, 2020, 40(13): 1324002 Copy Citation Text show less
    References

    [1] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).

    [2] Li P. Research progress of plasmonic nanofocusing[J]. Acta Physica Sinica, 68, 146201(2019).

    [3] Fang Y, Sun M. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits[J]. Light: Science & Applications, 4, e294(2015).

    [4] Wei H, Pan D, Zhang S et al. Plasmon waveguiding in nanowires[J]. Chemical Reviews, 118, 2882-2926(2018).

    [5] Wang Y P, Ma Y G, Guo X et al. Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates[J]. Optics Express, 20, 19006-19015(2012).

    [6] Teng D, Cao Q, Li S et al. Tapered dual elliptical plasmon waveguides as highly efficient terahertz connectors between approximate plate waveguides and two-wire waveguides[J]. Journal of the Optical Society of America A, 31, 268-273(2014).

    [7] Wang W H, Zhang N. Energy loss of surface plasmon polaritons on Ag nanowire waveguide[J]. Acta Physica Sinica, 67, 247302(2018).

    [8] Chen Y L, Xu J, Shi N N et al. Mode properties of metal-insulator-metal waveguide Bragg grating[J]. Acta Optica Sinica, 37, 1123002(2017).

    [9] Shao X Z, Zhang G M, Wang Q et al. Transmission characteristics of long-range dielectric-loaded surface plasmon polariton waveguide based on golden ratio[J]. Laser & Optoelectronics Progress, 53, 061301(2016).

    [10] Zhang G M, Sun H L, Li J M et al. Study on the transmission characteristics of symmetric hybrid long-range surface plasmon polariton waveguide[J]. Laser & Optoelectronics Progress, 50, 121301(2013).

    [11] Yan M, Qiu M. Guided plasmon polariton at 2D metal corners[J]. Journal of the Optical Society of America B, 24, 2333-2342(2007).

    [12] Zhou P, Lu Q J, Wu G Z et al. Mode properties of hybrid plasmonic waveguide based on semiconductor nanowire and metal ridge[J]. Acta Photonica Sinica, 42, 1460-1463(2013).

    [13] Bian Y S, Zheng Z, Zhao X et al. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration[J]. Optics Express, 17, 21320-21325(2009).

    [14] Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement[J]. Optics Express, 17, 16646-16653(2009).

    [15] Gao Y X, Shadrivov I V. Second harmonic generation in graphene-coated nanowires[J]. Optics Letters, 41, 3623-3626(2016).

    [16] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 332, 1291-1294(2011).

    [17] Li Y, Zhang H F, Fan T X et al. Theoretical analysis of double dielectric loaded graphene surface plasmon polariton[J]. Acta Optica Sinica, 36, 0724001(2016).

    [18] Yang X X, Kong X T, Dai Q. Optical properties of graphene plasmons and their potential applications[J]. Acta Physica Sinica, 64, 106801(2015).

    [19] Lu H, Zhao J L, Gu M. Nanowires-assisted excitation and propagation of mid-infrared surface plasmon polaritons in graphene[J]. Journal of Applied Physics, 120, 163106(2016).

    [20] Lu H, Zeng C, Zhang Q M et al. Graphene-based active slow surface plasmon polaritons[J]. Scientific Reports, 5, 8443(2015).

    [21] Xu W, Zhu Z H, Liu K et al. Dielectric loaded graphene plasmon waveguide[J]. Optics Express, 23, 5147-5153(2015).

    [22] Liu P H, Zhang X Z, Ma Z H et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 21, 32432-32440(2013).

    [23] Li Z Q, Feng D D, Li X et al. Graphene surface plasmon polaritons based photoelectric modulator with double branched structure[J]. Acta Optica Sinica, 38, 0124001(2018).

    [24] Li W, Chen B G, Meng C et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 14, 955-959(2014).

    [25] Xie Y N, Liu Z K, Geng L et al. Properties of graphene and antenna applications in microwave to THz[J]. Acta Optica Sinica, 35, s116005(2015).

    [26] Cao T, Li Y, Tian L et al. Fast switching “on/off” chiral surface plasmon polaritons in graphene-coated Ge2Sb2Te5 nanowire[J]. ACS Applied Nano Materials, 1, 759-767(2018).

    [27] Gao Y X, Ren G B, Zhu B F et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Optics Express, 22, 24322-24331(2014).

    [28] Gao Y X, Ren G B, Zhu B F et al. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 39, 5909-5912(2014).

    [29] Liu J P, Zhai X, Wang L L et al. Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide[J]. Plasmonics, 11, 703-711(2016).

    [30] Liu J P, Zhai X, Xie F et al. Analytical model of mid-infrared surface plasmon modes in a cylindrical long-range waveguide with double-layer graphene[J]. Journal of Lightwave Technology, 35, 1971-1979(2017).

    [31] Zhu B F, Ren G B. Yang, et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 10, 839-845(2015).

    [32] Teng D, Wang K, Li Z et al. Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range[J]. Optics Express, 27, 12458-12469(2019).

    [33] Teng D, Wang K, Li Z et al. Graphene gap plasmonic waveguide for deep-subwavelength transmission of mid-infrared waves[J]. Acta Optica Sinica, 40, 0623002(2020).

    [34] Teng D, Wang K, Li Z et al. Graphene-coated elliptical nanowires for low loss subwavelength terahertz transmission[J]. Applied Sciences, 9, 2351(2019).

    [35] Huang Y X, Zhang L, Yin H et al. Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation[J]. Optics Letters, 42, 2078-2081(2017).

    [36] Liang H, Zhang L, Zhang S et al. Gate-programmable electro-optical addressing array of graphene-coated nanowires with sub-10 nm resolution[J]. ACS Photonics, 3, 1847-1853(2016).

    [37] Zhai L, Xue W R, Yang R C et al. Propagation properties of nano dielectric parallel lines coated with graphene[J]. Acta Optica Sinica, 35, 1123002(2015).

    [38] Peng Y L, Xue W R, Wei Z Z et al. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides[J]. Acta Physica Sinica, 67, 038102(2018).

    [39] Wei Z Z, Xue W R, Peng Y L et al. Mode characteristics of waveguides based on three graphene-coated dielectric nanowires[J]. Acta Optica Sinica, 39, 0124001(2019).

    [40] Teng D, Wang K, Li Z. Graphene-coated nanowire waveguides and their applications[J]. Nanomaterials, 10, 229(2020).

    [41] Hajati M, Hajati Y. High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate[J]. Journal of the Optical Society of America B, 33, 2560-2565(2016).

    [42] Hajati M, Hajati Y. Plasmonic characteristics of two vertically coupled graphene-coated nanowires integrated with substrate[J]. Applied Optics, 56, 870-875(2017).

    [43] Wu D, Tian J P, Yang R C. Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate[J]. Journal of Nonlinear Optical Physics & Materials, 27, 1850013(2018).

    [44] Chandler-Horowitz D, Amirtharaj P M. High-accuracy, midinfrared (450 cm -1≤ω≤ 4000 cm -1) refractive index values of silicon[J]. Journal of Applied Physics, 97, 123526(2005).

    [45] Francescato Y, Giannini V, Maier S A. Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon[J]. New Journal of Physics, 15, 063020(2013).

    [46] Gan C H, Chu H S, Li E P. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies[J]. Physical Review B, 85, 125431(2012).

    [47] Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities[J]. Physical Review Letters, 105, 256805(2010).

    [48] Jiang T, Huang D, Cheng J L et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene[J]. Nature Photonics, 12, 430-436(2018).

    [49] Chen C F, Park C H, Boudouris B W et al. Controlling inelastic light scattering quantum pathways in graphene[J]. Nature, 471, 617-620(2011).

    [50] Oulton R F, Sorger V J, Genov D A et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2, 496-500(2008).

    [51] Cao T, Tian L, Liang H W et al. Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability[J]. Microsystems & Nanoengineering, 4, 7(2018).

    [52] Chen B G, Meng C, Yang Z Y et al. Graphene coated ZnO nanowire optical waveguides[J]. Optics Express, 22, 24276-24285(2014).

    [53] Dai D, Liu L, Wosinski L et al. Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides[J]. Electronics Letters, 42, 400-402(2006).

    Da Teng, Wenshuai Ma, Yandie Yang, Jinkang Guo, Kai Wang. Study on Subwavelength Transmission Properties of Triangular-Shaped Graphene-Coated Nanowires on Substrate[J]. Acta Optica Sinica, 2020, 40(13): 1324002
    Download Citation