• Journal of Innovative Optical Health Sciences
  • Vol. 9, Issue 1, 1630003 (2016)
Ji Wang1、*, Peiyu Li1, Xinyuan Chen2, and Mei X. Wu1
Author Affiliations
  • 1Wellman Center for Photomedicine Massachusetts General Hospital, and Department of Dermotology Harvard Medical School, Boston, MA 02114, USA
  • 2Biomedical and Pharmaceutical Science, College of Pharmacy University of Rhode Island, Kingston, RI 02881, USA
  • show less
    DOI: 10.1142/s1793545816300032 Cite this Article
    Ji Wang, Peiyu Li, Xinyuan Chen, Mei X. Wu. Laser facilitates vaccination[J]. Journal of Innovative Optical Health Sciences, 2016, 9(1): 1630003 Copy Citation Text show less
    References

    [1] G. J. Nabel, "Designing tomorrow's vaccines," N. Engl. J. Med. 368, 551–560 (2013).

    [2] A. Demirjian, O. Levy, "Safety and efficacy of neonatal vaccination," Eur. J. Immunol. 39, 36–46 (2009).

    [3] J. J. Goronzy, C. M. Weyand, "Understanding immunosenescence to improve responses to vaccines," Nat. Immunol. 14, 428–436 (2013).

    [4] S. G. Reed, M. T. Orr, C. B. Fox, "Key roles of adjuvants in modern vaccines," Nat. Med. 19, 1597– 1608 (2013).

    [5] M. F. Bachmann, G. T. Jennings, "Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns," Nat. Rev. Immunol. 10, 787–796 (2010).

    [6] S. B. Onikienko, A. B. Zemlyanoy, B. A. Margulis, I. V. Guzhova, M. B. Varlashova, V. S. Gornostaev, N. V. Tikhonova, G. A. Baranov, V. V. Lesnichiy, "Diagnostics and correction of the metabolic and immune disorders. Interactions of bacterial endotoxins and lipophilic xenobiotics with receptors associated with innate immunity," Donosologiya (St Petersburg) 1, 32–54 (2007).

    [7] X. Chen, P. Kim, B. Farinelli, A. Doukas, S. H. Yun, J. A. Gelfand, R. R. Anderson, M. X. Wu, "A novel laser vaccine adjuvant increases the motility of antigen presenting cells," PLoS One 5, e13776 (2010).

    [8] X. Chen, M. Pravetoni, B. Bhayana, P. R. Pentel, M. X. Wu, "High immunogenicity of nicotine vaccines obtained by intradermal delivery with safe adjuvants," Vaccine 31, 159–164 (2012).

    [9] S. Kashiwagi, J. Yuan, B. Forbes, M. L. Hibert, E. L. Lee, L. Whicher, C. Goudie, Y. Yang, T. Chen, B. Edelblute, B. Collette, L. Edington, J. Trussler, J. Nezivar, P. Leblanc, R. Bronson, K. Tsukada, M. Suematsu, J. Dover, T. Brauns, J. Gelfand, M. C. Poznansky, "Near–infrared laser adjuvant for influenza vaccine," PLoS One 8, e82899 (2013).

    [10] X. Chen, M. X. Wu, "Laser vaccine adjuvant for cutaneous immunization," Expert Rev. Vaccines 10, 1397–1403 (2011).

    [11] X. Chen, J. Wang, D. Shah, M. X. Wu, "An update on the use of laser technology in skin vaccination," Expert Rev. Vaccines 12, 1313–1323 (2013).

    [12] S. Kashiwagi, T. Brauns, J. Gelfand, M. C. Poznansky, "Laser vaccine adjuvants. History, progress, and potential," Hum. Vaccin. Immunother 10, 1892–1907 (2014).

    [13] J. K. Hickling, K. R. Jones, M. Friede, D. Zehrung, D. Chen, D. Kristensen, "Intradermal delivery of vaccines: Potential benefits and current challenges," Bull. World Health Organ. 89, 221–226 (2011).

    [14] J. Beran, A. Ambrozaitis, A. Laiskonis, N. Mickuviene, P. Bacart, Y. Calozet, E. Demanet, S. Heijmans, P. Van Belle, F. Weber, C. Salamand, "Intradermal influenza vaccination of healthy adults using a new microinjection system: A 3-year randomised controlled safety and immunogenicity trial," BMC Med. 7, 13 (2009).

    [15] I. Leroux-Roels, E. Vets, R. Freese, M. Seiberling, F. Weber, C. Salamand, G. Leroux-Roels, "Seasonal influenza vaccine delivered by intradermal microinjection: A randomised controlled safety and immunogenicity trial in adults," Vaccine 26, 6614–6619 (2008).

    [16] P. M. Jeena, M. K. Chhagan, J. Topley, H. M. Coovadia, "Safety of the intradermal Copenhagen 1331 BCG vaccine in neonates in Durban, South Africa," Bull. World Health Organ 79, 337–343 (2001).

    [17] X. Chen, D. Shah, G. Kositratna, D. Manstein, R. R. Anderson, M. X. Wu, "Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology," J. Control. Release 159, 43–51 (2012).

    [18] X. Chen, G. Kositratna, C. Zhou, D. Manstein, M. X. Wu, "Micro-fractional epidermal powder delivery for improved skin vaccination," J. Control. Release 192, 310–316 (2014).

    [19] D. Terhorst, E. Fossum, A. Baranska, S. Tamoutounour, C. Malosse, M. Garbani, R. Braun, E. Lechat, R. Crameri, B. Bogen, S. Henri, B. Malissen, "Laser-assisted intradermal delivery of adjuvant-free vaccines targeting XCR1t dendritic cells induces potent antitumoral responses," J. Immunol. 194, 5895–5902 (2015).

    [20] S. R. Walsh, R. Dolin, "Vaccinia viruses: Vaccines against smallpox and vectors against infectious diseases and tumors," Expert Rev. Vaccines 10, 1221– 1240 (2011).

    [21] Q. Liu, Y. Li, Z. Luo, G. Yang, Y. Liu, Y. Liu, M. Sun, J. Dai, Q. Li, C. Qin, Y. Shao, "HIV-1 vaccines based on replication-competent Tiantan vaccinia protected Chinese rhesus macaques from simian HIV infection," AIDS 29, 649–658 (2015).

    [22] J. Wang, B. Li, M. X. Wu, "Effective and lesion-free cutaneous influenza vaccination," Proc. Natl. Acad. Sci. USA 112, 5005–5010 (2015).

    [23] R. R. Anderson, J. A. Parrish, "Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation," Science 220, 524–527 (1983).

    [24] B. Li, J. Wang, S. Y. Yang, C. Zhou, M. X. Wu, "Sample-free quantification of blood biomarkers via laser-treated skin," Biomaterials 59, 30–38 (2015).

    [25] R. A. Seder, L. J. Chang, M. E. Enama, K. L. Zephir, U. N. Sarwar, I. J. Gordon, L. A. Holman, E. R. James, P. F. Billingsley, A. Gunasekera, A. Richman, S. Chakravarty, A. Manoj, S. Velmurugan, M. Li, A. J. Ruben, T. Li, A. G. Eappen, R. E. Stafford, S. H. Plummer, C. S. Hendel, L. Novik, P. J. Costner, F. H. Mendoza, J. G. Saunders, M. C. Nason, J. H. Richardson, J. Murphy, S. A. Davidson, T. L. Richie, M. Sedegah, A. Sutamihardja, G. A. Fahle, K. E. Lyke, M. B. Laurens, M. Roederer, K. Tewari, J. E. Epstein, B. K. Sim, J. E. Ledgerwood, B. S. Graham, S. L. Hoffman, VRC 312 Study Team, "Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine," Science 341, 1359–1365 (2013).

    [26] World Health Organization, "World Malaria Report 2013," (2013).

    [27] K. E. Kester, J. F. Cummings, O. Ofori-Anyinam, C. F. Ockenhouse, U. Krzych, P. Moris, R. Schwenk, R. A. Nielsen, Z. Debebe, E. Pinelis, L. Juompan, J. Williams, M. Dowler, V. A. Stewart, R. A. Wirtz, M. C. Dubois, M. Lievens, J. Cohen, W. R. Ballou, D. G. Heppner Jr., RTS SVEG, "Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria- naive adults: Safety, efficacy, and immunologic associates of protection," J. Infect. Dis. 200, 337– 346 (2009).

    [28] S. Conteh, R. Chattopadhyay, C. Anderson, S. L. Hoffman, "Plasmodium yoelii-infected A. stephensi inefficiently transmit malaria compared to intravenous route," PLoS One 5, e8947 (2010).

    [29] C. Zhou, X. Chen, Q. Zhang, J. Wang, M. X. Wu, "Laser mimicking mosquito bites for skin delivery of malaria sporozoite vaccines," J. Control. Release 204, 30–37 (2015).

    [30] S. Hutchison, R. A. Benson, V. B. Gibson, A. H. Pollock, P. Garside, J. M. Brewer, "Antigen depot is not required for alum adjuvanticity," FASEB J. 26, 1272–1279 (2012).

    [31] T. Marichal, K. Ohata, D. Bedoret, C. Mesnil, C. Sabatel, K. Kobiyama, P. Lekeux, C. Coban, S. Akira, K. J. Ishii, F. Bureau, C. J. Desmet, "DNA released from dying host cells mediates aluminum adjuvant activity," Nat. Med. 17, 996–1002 (2011).

    [32] A. S. McKee, M. A. Burchill, M. W. Munks, L. Jin, J. W. Kappler, R. S. Friedman, J. Jacobelli, P. Marrack, "Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells," Proc. Natl. Acad. Sci. USA 110, E1122–E1131 (2013).

    [33] S. C. Eisenbarth, O. R. Colegio, W. O'Connor, F. S. Sutterwala, R. A. Flavell, "Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants," Nature 453, 1122–1126 (2008).

    [34] J. Wang, D. Shah, X. Chen, R. R. Anderson, M. X. Wu, "A micro-sterile inflammation array as an adjuvant for influenza vaccines," Nat. Commun 5, 4447 (2014).

    [35] D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, R. R. Anderson, "Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury," Lasers Surg. Med. 34, 426–438 (2004).

    [36] J. Wu, Z. J. Chen, "Innate immune sensing and signaling of cytosolic nucleic acids," Annu. Rev. Immunol. 32 461–488 (2014).

    [37] B. K. Davis, H. Wen, J. P. Ting, "The inflammasome NLRs in immunity, inflammation, and associated diseases," Annu. Rev. Immunol. 29, 707–735 (2011).

    [38] G. Trinchieri, A. Sher, "Cooperation of Toll-like receptor signals in innate immune defence," Nat. Rev. Immunol. 7, 179–190 (2007).

    [39] K. J. Ishii, T. Kawagoe, S. Koyama, K. Matsui, H. Kumar, T. Kawai, S. Uematsu, O. Takeuchi, F. Takeshita, C. Coban, S. Akira, "TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines," Nature 451, 725–729 (2008).

    [40] H. Ishikawa, Z. Ma, G. N. Barber, "STING regulates intracellular DNA-mediated, type I interferon- dependent innate immunity," Nature 461, 788– 792 (2009).

    [41] S. R. Woo, M. B. Fuertes, L. Corrales, S. Spranger, M. J. Furdyna, M. Y. Leung, R. Duggan, Y. Wang, G. N. Barber, K. A. Fitzgerald, M. L. Alegre, T. F. Gajewski, "STING-Dependent Cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors," Immunity 41, 830–842 (2014).

    [42] S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, M. R. Prausnitz, "Dissolving polymer microneedle patches for influenza vaccination," Nat. Med. 16, 915–920 (2010).

    [43] A. Vrdoljak, "Review of recent literature on microneedle vaccine delivery technologies," Vaccine: Development and Therapy 3, 47–55 (2013).

    [44] H. S. Gill, D. D. Denson, B. A. Burris, M. R. Prausnitz, "Effect of microneedle design on pain in human volunteers," Clin. J. Pain 24, 585–594 (2008).

    [45] D. M. Skowronski, N. Z. Janjua, G. De Serres, S. Sabaiduc, A. Eshaghi, J. A. Dickinson, K. Fonseca, A. L. Winter, J. B. Gubbay, M. Krajden, M. Petric, H. Charest, N. Bastien, T. L. Kwindt, S. M. Mahmud, P. Van Caeseele, Y. Li, "Low 2012–2013 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses," PLoS One 9, e92153 (2014).

    [46] K. Hancock, V. Veguilla, X. Lu, W. Zhong, E. N. Butler, H. Sun, F. Liu, L. Dong, J. R. DeVos, P. M. Gargiullo, T. L. Brammer, N. J. Cox, T. M. Tumpey, J. M. Katz, "Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus," N. Engl. J. Med. 361, 1945–1952 (2009).

    [47] S. Koyama, T. Aoshi, T. Tanimoto, Y. Kumagai, K. Kobiyama, T. Tougan, K. Sakurai, C. Coban, T. Horii, S. Akira, K. J. Ishii, "Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes," Sci. Transl. Med. 2, 25ra24 (2010).

    [48] S. J. Gibson, J. M. Lindh, T. R. Riter, R. M. Gleason, L. M. Rogers, A. E. Fuller, J. L. Oesterich, K. B. Gorden, X. Qiu, S. W. McKane, R. J. Noelle, R. L. Miller, R. M. Kedl, P. Fitzgerald Bocarsly, M. A. Tomai, J. P. Vasilakos, "Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod," Cell. Immunol. 218, 74–86 (2002).

    [49] C. Cantisani, T. Lazic, A. G. Richetta, R. Clerico, C. Mattozzi, S. Calvieri, "Imiquimod 5% cream use in dermatology, side effects and recent patents," Recent Pat. Inflamm. Allergy Drug Discov. 6, 65–69 (2012).

    Ji Wang, Peiyu Li, Xinyuan Chen, Mei X. Wu. Laser facilitates vaccination[J]. Journal of Innovative Optical Health Sciences, 2016, 9(1): 1630003
    Download Citation