• Advanced Photonics
  • Vol. 5, Issue 2, 024001 (2023)
Jin Yao1,†, Rong Lin1, Mu Ku Chen1,2,3, and Din Ping Tsai1,2,3,*
Author Affiliations
  • 1City University of Hong Kong, Department of Electrical Engineering, Hong Kong, China
  • 2City University of Hong Kong, Centre for Biosystems, Neuroscience, and Nanotechnology, Hong Kong, China
  • 3City University of Hong Kong, State Key Laboratory of Terahertz and Millimeter Waves, Hong Kong, China
  • show less
    DOI: 10.1117/1.AP.5.2.024001 Cite this Article Set citation alerts
    Jin Yao, Rong Lin, Mu Ku Chen, Din Ping Tsai, "Integrated-resonant metadevices: a review," Adv. Photon. 5, 024001 (2023) Copy Citation Text show less
    References

    [1] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] A. V. Kildishev et al. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [3] A. I. Kuznetsov et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [4] H.-H. Hsiao et al. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [5] Q. Ma et al. Information metasurfaces and intelligent metasurfaces. Photonics Insights, 1, R01(2022).

    [6] S. Sun et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223-6229(2012).

    [7] W. L. Hsu et al. Vertical split-ring resonator based anomalous beam steering with high extinction ratio. Sci. Rep., 5, 11226(2015).

    [8] M. K. Chen et al. Meta-lens in the sky. IEEE Access, 10, 46552-46557(2022).

    [9] S. Chen et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light: Sci. Appl., 10, 222(2021).

    [10] Y. Luo et al. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Lett., 21, 5133-5142(2021).

    [11] Y. Luo et al. Metasurface-based abrupt autofocusing beam for biomedical applications. Small Methods, 6, 2101228(2022).

    [12] Y. Luo et al. Meta-lens light-sheet fluorescence microscopy for in vivo imaging. Nanophotonics, 11, 1949-1959(2022).

    [13] H. C. Wang et al. Ultrathin planar cavity metasurfaces. Small, 14, 1703920(2018).

    [14] G. Qu et al. Reprogrammable meta-hologram for optical encryption. Nat. Commun., 11, 5484(2020).

    [15] Y. Gao et al. Nonlinear holographic all-dielectric metasurfaces. Nano Lett., 18, 8054-8061(2018).

    [16] C. Huang et al. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [17] X. Zhang et al. Chiral emission from resonant metasurfaces. Science, 377, 1215-1218(2022).

    [18] P. C. Wu et al. Vertical split-ring resonator based nanoplasmonic sensor. Appl. Phys. Lett., 105, 033105(2014).

    [19] J. Qin et al. Metasurface micro/nano-optical sensors: principles and applications. ACS Nano, 16, 11598-11618(2022).

    [20] M. Semmlinger et al. Vacuum ultraviolet light-generating metasurface. Nano Lett., 18, 5738-5743(2018).

    [21] M. Semmlinger et al. Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface. Nano Lett., 19, 8972-8978(2019). https://doi.org/10.1021/acs.nanolett.9b03961

    [22] M. L. Tseng et al. Vacuum ultraviolet nonlinear metalens. Sci. Adv., 8, eabn5644(2022).

    [23] Y. Fan et al. Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nat. Commun., 10, 2085(2019).

    [24] J. Deng et al. Giant enhancement of second-order nonlinearity of epsilon-near-zero medium by a plasmonic metasurface. Nano Lett., 20, 5421-5427(2020).

    [25] Y. Fan et al. Enhanced multiphoton processes in perovskite metasurfaces. Nano Lett., 21, 7191-7197(2021).

    [26] L. Li et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 368, 1487-1490(2020).

    [27] T. Santiago-Cruz et al. Photon pairs from resonant metasurfaces. Nano Lett., 21, 4423-4429(2021).

    [28] A. S. Solntsev et al. Metasurfaces for quantum photonics. Nat. Photonics, 15, 327-336(2021).

    [29] G. Li et al. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [30] S. Chen et al. Metasurface-empowered optical multiplexing and multifunction. Adv. Mater., 32, 1805912(2020).

    [31] K. Du et al. Optical metasurfaces towards multifunctionality and tunability. Nanophotonics, 11, 1761-1781(2022).

    [32] M. L. Tseng et al. Metalenses: advances and applications. Adv. Opt. Mater., 6, 1800554(2018).

    [33] S. Wang et al. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [34] S. Yu et al. Electromagnetic wave manipulation based on few-layer metasurfaces and polyatomic metasurfaces. ChemPhysMater, 1, 6-16(2021).

    [35] F. Ding et al. Gradient metasurfaces: a review of fundamentals and applications. Rep. Prog. Phys., 81, 026401(2017).

    [36] M. K. Chen et al. Principles, functions, and applications of optical meta-lens. Adv. Opt. Mater., 9, 2001414(2021).

    [37] M.-K. Chen et al. Optical meta-devices: advances and applications. Jpn. J. Appl. Phys., 58, SK0801(2019).

    [38] H.-H. Hsiao et al. Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Adv. Opt. Mater., 6, 1800031(2018).

    [39] N. Meinzer et al. Plasmonic meta-atoms and metasurfaces. Nat. Photonics, 8, 889-898(2014).

    [40] F. Aieta et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [41] Y. Guo et al. Classical and generalized geometric phase in electromagnetic metasurfaces. Photonics Insights, 1, R03(2022).

    [42] X. Zou et al. Imaging based on metalenses. PhotoniX, 1, 2(2020).

    [43] F. Aieta et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342-1345(2015).

    [44] M. Khorasaninejad et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [45] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [46] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [47] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light: Sci. Appl., 7, 85(2018).

    [48] M. Khorasaninejad et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett., 15, 5358-5362(2015).

    [49] E. Arbabi et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625-632(2017).

    [50] W. T. Chen et al. Broadband achromatic metasurface-refractive optics. Nano. Lett., 18, 7801-7808(2018).

    [51] Q. Cheng et al. Broadband achromatic metalens in terahertz regime. Sci. Bull., 64, 1525-1531(2019).

    [52] W. T. Chen et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [53] Y. Wang et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun., 12, 5560(2021).

    [54] P. C. Wu et al. Isotropic absorption and sensor of vertical split-ring resonator. Adv. Opt. Mater., 5, 1600581(2017).

    [55] M. L. Tseng et al. Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality. Adv. Opt. Mater., 7, 1900617(2019).

    [56] Y. Liang et al. Hybrid anisotropic plasmonic metasurfaces with multiple resonances of focused light beams. Nano Lett., 21, 8917-8923(2021).

    [57] M. Decker et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater., 3, 813-820(2015).

    [58] P. C. Wu et al. Optical anapole metamaterial. ACS Nano, 12, 1920-1927(2018).

    [59] Y. Yang et al. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [60] K. Koshelev et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    [61] A. Hassanfiroozi et al. Toroidal-assisted generalized Huygens’ sources for highly transmissive plasmonic metasurfaces. Laser Photonics Rev., 16, 2100525(2022).

    [62] J. Yao et al. Doubly mirror-induced electric and magnetic anapole modes in metal-dielectric-metal nanoresonators. Opt. Lett., 46, 576-579(2021).

    [63] J. Yao et al. Plasmonic anapole metamaterial for refractive index sensing. PhotoniX, 3, 23(2022).

    [64] K. Koshelev et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics, 6, 1639-1644(2019).

    [65] Y. Liang et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett., 20, 6351-6356(2020).

    [66] A. C. Overvig et al. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett., 125, 017402(2020).

    [67] A. Overvig et al. Chiral quasi-bound states in the continuum. Phys. Rev. Lett., 126, 073001(2021).

    [68] M. Lawrence et al. High quality factor phase gradient metasurfaces. Nat. Nanotechnol., 15, 956-961(2020).

    [69] S. C. Malek et al. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light: Sci. Appl., 11, 246(2022).

    [70] X. Fang et al. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2019).

    [71] H. Ren et al. Metasurface orbital angular momentum holography. Nat. Commun., 10, 2986(2019).

    [72] H. Ren et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948-955(2020).

    [73] Y. Liang et al. Full-Stokes polarization perfect absorption with diatomic metasurfaces. Nano Lett., 21, 1090-1095(2021).

    [74] C. Chen et al. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Lett., 21, 1815-1821(2021).

    [75] S. M. Kamali et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X, 7, 041056(2017).

    [76] E. Klopfer et al. Dynamic focusing with high-quality-factor metalenses. Nano Lett., 20, 5127-5132(2020).

    [77] J. Yao et al. Enhanced optical bistability by coupling effects in magnetic metamaterials. J. Light. Technol., 37, 5814-5820(2019).

    [78] Y. Meng et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Res., 8, 564-576(2020).

    [79] M. D. Aiello et al. Achromatic varifocal metalens for the visible spectrum. ACS Photonics, 6, 2432-2440(2019).

    [80] S. C. Malek et al. Active nonlocal metasurfaces. Nanophotonics, 10, 655-665(2020).

    [81] A. Archetti et al. Thermally reconfigurable metalens. Nanophotonics, 11, 3969-3980(2022).

    [82] Y. W. Huang et al. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    [83] K. Chen et al. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [84] S. Venkatesh et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron., 3, 785-793(2020).

    [85] B. Xiong et al. Realizing colorful holographic mimicry by metasurfaces. Adv. Mater., 33, 2005864(2021).

    [86] W. Yang et al. Dynamic bifunctional metasurfaces for holography and color display. Adv. Mater., 33, 2101258(2021).

    [87] C. H. Chu et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev., 10, 986-994(2016).

    [88] Y. Zhang et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661-666(2021).

    [89] C. Choi et al. Hybrid state engineering of phase-change metasurface for all-optical cryptography. Adv. Funct. Mater., 31, 2007210(2020).

    [90] H. S. Ee, R. Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett., 16, 2818-2823(2016).

    [91] S. C. Malek et al. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett., 17, 3641-3645(2017).

    [92] E. Arbabi et al. Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep., 6, 32803(2016).

    [93] E. Arbabi et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 3, 628-633(2016).

    [94] J. T. Hu et al. Plasmonic lattice lenses for multiwavelength achromatic focusing. ACS Nano, 10, 10275-10282(2016).

    [95] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [96] F. L. Wang et al. Visible achromatic metalens design based on artificial neural network. Adv. Opt. Mater., 10, 2101842(2022).

    [97] Q. Guo et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl. Acad. Sci. U. S. A., 116, 22959-22965(2019).

    [98] Z. B. Fan et al. A broadband achromatic metalens array for integral imaging in the visible. Light: Sci. Appl., 8, 67(2019).

    [99] R. J. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [100] M. K. Chen et al. Edge detection with meta-lens: from one dimension to three dimensions. Nanophotonics, 10, 3709-3715(2021).

    [101] S. Y. Tan et al. 3D imaging using extreme dispersion in optical metasurfaces. ACS Photonics, 8, 1421-1429(2021).

    [102] M. K. Chen et al. A meta-device for intelligent depth perception. Adv. Mater., 2107465(2022).

    [103] S. Wei et al. Design of ultracompact polarimeters based on dielectric metasurfaces. Opt. Lett., 42, 1580-1583(2017).

    [104] E. Arbabi et al. Full-Stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics, 5, 3132-3140(2018).

    [105] Y. H. Xu et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation. ACS Photonics, 6, 2933-2941(2019).

    [106] W. B. Zang et al. Polarization generation and manipulation based on nonlinear plasmonic metasurfaces. Adv. Opt. Mater., 7, 1801747(2019).

    [107] W. T. Chen et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology, 27, 224002(2016).

    [108] P. C. Wu et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett., 17, 445-452(2017).

    [109] P. C. Wu et al. Visible metasurfaces for on-chip polarimetry. ACS Photonics, 5, 2568-2573(2018).

    [110] Z. Y. Yang et al. Generalized Hartmann–Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun., 9, 4607(2018).

    [111] C. Yan et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Appl. Phys. Lett., 114, 161904(2019).

    [112] F. Ding et al. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser Photonics Rev., 14, 2000116(2020).

    [113] P. Genevet et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett., 100, 013101(2012).

    [114] F. Bouchard et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett., 105, 101905(2014).

    [115] E. Karimi et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light: Sci. Appl., 3, e167(2014).

    [116] M. Pu et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv., 1, e1500396(2015).

    [117] S. X. Yu et al. Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface. Appl. Phys. Express, 9, 082202(2016).

    [118] H. X. Xu et al. Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface. IEEE Trans. Antennas Propag., 65, 7378-7382(2017).

    [119] C. M. Zhang et al. Multichannel metasurface for simultaneous control of holograms and twisted light beams. ACS Photonics, 4, 1906-1912(2017).

    [120] Z. H. Jiang et al. Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness. Phys. Rev. Appl., 9, 064009(2018).

    [121] K. Y. Liu et al. Dual-frequency geometric phase metasurface for dual-mode vortex beam generator. J. Phys. D: Appl. Phys., 52, 255002(2019).

    [122] S. W. Tang et al. High-efficiency broadband vortex beam generator based on transmissive metasurface. Opt. Express, 27, 4281-4291(2019).

    [123] S. Wang et al. Diatomic metasurface based broadband J-plate for arbitrary spin-to-orbital conversion. J. Phys. D: Appl. Phys., 52, 324002(2019).

    [124] R. S. Xie et al. High-efficiency ultrathin dual-wavelength Pancharatnam–Berry metasurfaces with complete independent phase control. Adv. Opt. Mater., 7, 1900594(2019).

    [125] Z. H. Jiang et al. A single noninterleaved metasurface for high-capacity and flexible mode multiplexing of higher-order Poincaré sphere beams. Adv. Mater., 32, 1903983(2020).

    [126] H. X. Xu et al. Wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface. Adv. Mater. Technol., 5, 1900710(2020).

    [127] E. Maguid et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science, 352, 1202-1206(2016).

    [128] F. Zhang et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv. Mater., 32, 1908194(2020).

    [129] P. Yu et al. Generation of switchable singular beams with dynamic metasurfaces. ACS Nano, 13, 7100-7106(2019).

    [130] C. L. Zheng et al. All-dielectric metasurface for manipulating the superpositions of orbital angular momentum via spin-decoupling. Adv. Opt. Mater., 9, 2002007(2021).

    [131] K. Zhang et al. Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing. Laser Photonics Rev., 15, 2000351(2021).

    [132] L. Huang et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [133] X. Ni et al. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [134] F. Zhou et al. Plasmonic holographic imaging with V-shaped nanoantenna array. Opt. Express, 21, 4348-4354(2013).

    [135] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [136] H. S. Khaliq et al. Broadband chiro-optical effects for futuristic meta-holographic displays. Adv. Opt. Mater., 10, 2201175(2022).

    [137] W. P. Wan et al. Tunable full-color vectorial meta-holography. Adv. Opt. Mater., 10, 2201478(2022).

    [138] M. Khorasaninejad et al. Broadband and chiral binary dielectric meta-holograms. Sci. Adv., 2, e1501258(2016).

    [139] W. Y. Zhao et al. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt. Lett., 41, 147-150(2016).

    [140] S. Choudhury et al. Pancharatnam–Berry phase manipulating metasurface for visible color hologram based on low loss silver thin film. Adv. Opt. Mater., 5, 1700196(2017).

    [141] Q. Wang et al. Polarization and frequency multiplexed terahertz meta-holography. Adv. Opt. Mater., 5, 1700277(2017).

    [142] Z. W. Xie et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics, 4, 2158-2164(2017).

    [143] Q. Wang et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light: Sci. Appl., 7, 25(2018).

    [144] X. B. Liu et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface. Adv. Opt. Mater., 7, 1900175(2019).

    [145] A. C. Overvig et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light: Sci. Appl., 8, 92(2019).

    [146] M. A. Ansari et al. Engineering spin and antiferromagnetic resonances to realize an efficient direction-multiplexed visible meta-hologram. Nanoscale Horiz., 5, 57-64(2020).

    [147] D. Frese et al. Nonlinear bicolor holography using plasmonic metasurfaces. ACS Photonics, 8, 1013-1019(2021).

    [148] J. Jang et al. Independent multichannel wavefront modulation for angle multiplexed meta-holograms. Adv. Opt. Mater., 9, 2100678(2021).

    [149] H. S. Khaliq et al. Manifesting simultaneous optical spin conservation and spin isolation in diatomic metasurfaces. Adv. Opt. Mater., 9, 2002002(2021).

    [150] I. Kim et al. Dual-band operating metaholograms with heterogeneous meta-atoms in the visible and near-infrared. Adv. Opt. Mater., 9, 2100609(2021).

    [151] W. P. Wan et al. Multiplexing vectorial holographic images with arbitrary metaholograms. Adv. Opt. Mater., 9, 2100626(2021).

    [152] L. G. Deng et al. Bilayer-metasurface design, fabrication, and functionalization for full-space light manipulation. Adv. Opt. Mater., 10, 2102179(2022).

    [153] D. N. Ma et al. Deep-learning enabled multicolor meta-holography. Adv. Opt. Mater., 10, 2102628(2022).

    [154] R. Z. Zhao et al. Controllable polarization and diffraction modulated multi-functionality based on metasurface. Adv. Opt. Mater., 10, 2102596(2022).

    [155] W. T. Chen et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett., 14, 225-230(2014).

    [156] D. D. Wen et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [157] Z. L. Deng et al. Diatomic metasurface for vectorial holography. Nano Lett., 18, 2885-2892(2018).

    [158] Y. W. Huang et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett., 15, 3122-3127(2015).

    [159] H. Feng et al. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photonics, 6, 2910-2916(2019).

    [160] Z. L. Deng et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv. Funct. Mater., 30, 1910610(2020).

    [161] F. Zhang et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv. Sci., 7, 1903156(2020).

    [162] S. Wan et al. Angular-multiplexing metasurface: building up independent-encoded amplitude/phase dictionary for angular illumination. Adv. Opt. Mater., 9, 2101547(2021).

    [163] S. Wan et al. Angular-encrypted quad-fold display of nanoprinting and meta-holography for optical information storage. Adv. Opt. Mater., 10, 2102820(2022).

    [164] Z. Zhou et al. Multifold integration of printed and holographic meta-image displays enabled by dual-degeneracy. Small, 18, 2106148(2022).

    [165] Q. Fan et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys. Rev. Lett., 125, 267402(2020).

    [166] Q. S. Wei et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett., 19, 8964-8971(2019).

    [167] Y. J. Bao et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light: Sci. Appl., 8, 95(2019).

    [168] Q. Dai et al. A single-celled tri-functional metasurface enabled with triple manipulations of light. Adv. Funct. Mater., 30, 2003990(2020).

    [169] I. Kim et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun., 12, 3614(2021).

    [170] C. Yan et al. Fano-resonance-assisted metasurface for color routing. Light: Sci. Appl., 6, e17017(2017).

    [171] Y. Zhou et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett., 18, 7529-7537(2018).

    [172] D. M. Lin et al. Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett., 16, 7671-7676(2016).

    [173] M. Miyata et al. High-sensitivity color imaging using pixel-scale color splitters based on dielectric metasurfaces. ACS Photonics, 6, 1442-1450(2019).

    [174] B. H. Chen et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett., 17, 6345-6352(2017).

    [175] M. Miyata et al. Full-color-sorting metalenses for high-sensitivity image sensors. Optica, 8, 1596-1604(2021).

    [176] J. Yao et al. Enhancing artificial sum frequency generation from graphene-gold metamolecules. Opt. Lett., 43, 3160-3163(2018).

    [177] G. Saerens et al. Engineering of the second-harmonic emission directionality with III–V semiconductor rod nanoantennas. Laser Photonics Rev., 14, 2000028(2020).

    [178] J. Yao et al. Efficient third harmonic generation by doubly enhanced electric dipole resonance in metal-based silicon nanodisks. J. Lightwave Technol., 38, 6312-6320(2020).

    [179] J. S. Ginsberg et al. Enhanced harmonic generation in gases using an all-dielectric metasurface. Nanophotonics, 10, 733-740(2021).

    [180] G. Zograf et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photonics, 9, 567-574(2022).

    [181] G.-C. Li et al. Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity. Nat. Commun., 12, 4326(2021).

    [182] T. Shibanuma et al. Efficient third harmonic generation from metal-dielectric hybrid nanoantennas. Nano Lett., 17, 2647-2651(2017).

    [183] Y. Yang et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

    [184] M. R. Shcherbakov et al. Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers. ACS Photonics, 2, 578-582(2015).

    [185] L. Ghirardini et al. Shaping the nonlinear emission pattern of a dielectric nanoantenna by integrated holographic gratings. Nano Lett., 18, 6750-6755(2018).

    [186] N. Mao et al. Nonlinear diatomic metasurface for real and Fourier space image encoding. Nano Lett., 20, 7463-7468(2020).

    [187] T. Santiago-Cruz et al. Resonant metasurfaces for generating complex quantum states. Science, 377, 991-995(2022).

    [188] M. K. Chen et al. Artificial intelligence in meta-optics. Chem. Rev., 122, 15356-15413(2022).

    [189] F. Ding et al. Dynamic metasurfaces using phase-change chalcogenides. Adv. Opt. Mater., 7, 1801709(2019).

    [190] C. Meng et al. Dynamic piezoelectric MEMS-based optical metasurfaces. Sci. Adv., 7, eabg5639(2021).

    [191] J. Kim et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv. Photonics, 4, 024001(2022).

    [192] F. Ding et al. Recent advances in polarization-encoded optical metasurfaces. Adv. Photonics Res., 2, 2000173(2021).

    [193] M. Parry et al. Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces. Adv. Photonics, 3, 055001(2021).