• Acta Optica Sinica
  • Vol. 41, Issue 1, 0114002 (2021)
Changsheng Yang1、3, Xu Cen1, Shanhui Xu1、2、3, and Zhongmin Yang1、2、3、4、*
Author Affiliations
  • 1State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
  • 2School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
  • 3Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, Guangdong 510640, China
  • 4Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong 510640, China
  • show less
    DOI: 10.3788/AOS202141.0114002 Cite this Article Set citation alerts
    Changsheng Yang, Xu Cen, Shanhui Xu, Zhongmin Yang. Research Progress of Single-Frequency Fiber Laser[J]. Acta Optica Sinica, 2021, 41(1): 0114002 Copy Citation Text show less
    References

    [1] Ball G A, Morey W W, Glenn W H. Standing-wave monomode erbium fiber laser[J]. IEEE Photonics Technology Letters, 3, 613-615(1991). http://ieeexplore.ieee.org/document/87930

    [2] Hou Y B, Zhang Q, Wang P. Frequency- and intensity-noise suppression in Yb 3+-doped single-frequency fiber laser by a passive optical-feedback loop[J]. Optics Express, 24, 12993-12999(2016).

    [3] Hou Y B, Zhang Q, Qi S X et al. 15 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference[J]. Optics Letters, 43, 1383-1386(2018). http://europepmc.org/abstract/MED/29543241

    [4] Liu J, Shi H X, Liu K et al. 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA[J]. Optics Express, 22, 13572-13578(2014).

    [5] Zhang X, Diao W F, Liu Y et al. Eye-safe single-frequency single-mode polarized all-fiber pulsed laser with peak power of 361 W[J]. Applied Optics, 53, 2465-2469(2014).

    [6] Zhu R, Zhou J, Liu J Q et al. High energy narrow-linewidth ytterbium-doped pulsed fiber amplifier[J]. Proceedings of SPIE, 8192, 81922S(2011). http://spie.org/Publications/Proceedings/Paper/10.1117/12.900755

    [7] Liu Y, Liu J Q, Chen W B. Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar[J]. Chinese Optics Letters, 9, 090604(2011). http://www.opticsjournal.net/Articles/Abstract?aid=OJ110713000027u2x4A7

    [8] Xie Z X, Shi C D, Sheng Q et al. A single-frequency 1064-nmYb 3+-doped fiber laser tandem-pumped at 1018 nm[J]. Optics Communications, 461, 125262(2020).

    [9] Fu S J, Shi W, Zhang H W et al. Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect[J]. IEEE Photonics Journal, 9, 1-7(2017). http://ieeexplore.ieee.org/document/7936458/

    [10] Shi C D, Fu S J, Shi G N et al. All-fiberized single-frequency silica fiber laser operating above 2 μm based on SMS fiber devices[J]. Optik, 187, 291-296(2019). http://www.sciencedirect.com/science/article/pii/S003040261930556X

    [11] Xu S H, Yang Z M, Zhang W N et al. 400 mW ultrashort cavity low-noise single-frequency Yb 3+-doped phosphate fiber laser[J]. Optics Letters, 32, 3708-3710(2011).

    [12] Yang C S, Zhao Q L, Feng Z M et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser[J]. Optics Express, 24, 29794-29799(2016).

    [13] Xu S H, Yang Z M, Liu T et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 15 μm[J]. Optics Express, 18, 1249-1254(2010). http://www.onacademic.com/detail/journal_1000035240538210_7e43.html

    [14] Yang C S, Guan X C, Lin W et al. Efficient 16 μm linearly-polarized single-frequency phosphate glass fiber laser[J]. Optics Express, 25, 29078-29085(2017).

    [15] Guan X C, Yang C S, Qiao T et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm 3+-doped germanate fiber laser at 1950 nm[J]. Optics Express, 26, 6817-6835(2018).

    [16] Yamaguchi A, Uetake S, Takahashi Y. A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms[J]. Applied Physics B, 91, 57-60(2008). http://link.springer.com/article/10.1007/s00340-008-2953-2

    [17] Paul J, Kaneda Y, Wang T L et al. Doppler-free spectroscopy of mercury at 2537 nm using a high-power, frequency-quadrupled, optically pumped external-cavity semiconductor laser[J]. Optics Letters, 36, 61-63(2011). http://www.onacademic.com/detail/journal_1000035242241610_43b0.html

    [18] Sheth R, Balesh E R, Zhang Y S et al. Three-dimensional printing: an enabling technology for IR[J]. Journal of Vascular and Interventional Radiology, 27, 859-865(2016). http://www.sciencedirect.com/science/article/pii/S1051044316003419

    [19] Fletcher A S, Hamilton S A, Moores J D. Undersea laser communication with narrow beams[J]. IEEE Communications Magazine, 53, 49-55(2015). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7321971

    [20] Yang C S, Huang Z P, Deng H Q et al. Ultra-compact all-fiber narrow-linewidth single-frequency blue laser at 489 nm[J]. Journal of Optics, 20, 025803(2018). http://adsabs.harvard.edu/abs/2018JOpt...20b5803Y

    [21] Gray S, Liu A P, Walton D T et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express, 15, 17044-17050(2007).

    [22] Zhou P, Ma Y X, Wang X L et al. Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm[J]. Optics Letters, 34, 2939-2941(2009).

    [23] Yang C S, Xu S H, Chen D et al. 52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser[J]. Journal of Optics, 18, 055801(2016).

    [24] Zhang L, Jiang H W, Cui S Z et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser & Photonics Reviews, 8, 889-895(2014). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201400055/abstract

    [25] Gouhier B, Guiraud G, Rota-Rodrigo S et al. 25 W single-frequency, low noise fiber MOPA at 1120 nm[J]. Optics Letters, 43, 308-311(2018).

    [26] Hansen A K, Christensen M, Noordegraaf D et al. Efficient generation of 19 W yellow light by cascaded frequency doubling of a distributed Bragg reflector tapered diode[J]. Applied Optics, 55, 9270-9274(2016). http://www.osapublishing.org/ao/abstract.cfm?uri=ao-55-32-9270

    [27] Fang Q, Xu Y, Fu S J et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm[J]. Optics Letters, 41, 1829-1832(2016).

    [28] Zhu X S, Shi W, Zong J et al. 976 nm single-frequency distributed Bragg reflector fiber laser[J]. Optics Letters, 37, 4167-4169(2012).

    [29] Huang Z P, Deng H Q, Yang C S et al. Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb 3+-doped phosphate fiber laser at 978 nm[J]. Optics Express, 25, 1535-1541(2017).

    [30] Noginov M A, Zhu G H, Fowlkes I. Fiber-coupled random laser. [C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, California. Washington, D.C.: OSA, CThO3(2004).

    [31] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 39, 666-669(2014).

    [32] Huang L, Wu H S, Li R X et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier[J]. Optics Letters, 42, 1-4(2017).

    [33] Yang C S, Guan X C, Xu S H et al. 210 W kHz-linewidth linearly-polarized all-fiber single-frequency MOPA laser. [C]∥Conference on Lasers and Electro-Optics, San Jose, California. Washington, D.C.: OSA, JTu2A, 164(2018).

    [34] Lai W C, Ma P F, Liu W et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020). http://www.researchgate.net/publication/342367255_550_W_single_frequency_fiber_amplifiers_emitting_at_1030_nm_based_on_tapered_Yb-doped_fiber

    [35] Wang Y F, Wu J M, Zhao Q L et al. Single-frequency DBR Nd-doped fiber laser at 1120 nm with a narrow linewidth and low threshold[J]. Optics Letters, 45, 2263-2266(2020). http://www.researchgate.net/publication/339838980_Single_frequency_DBR_Nd-doped_fiber_laser_at_1120_nm_with_narrow_linewidth_and_low_threshold

    [36] Su R T, Zhou P, Xiao H et al. 96.2 W all-fiberized nanosecond single-frequency fiber MOPA[J]. Laser Physics, 22, 248-251(2012).

    [37] Zhang Y F, Feng Z M, Xu S H et al. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm[J]. Journal of Optics, 17, 125705(2015).

    [38] Leigh M, Shi W, Zong J et al. Compact, single-frequency all-fiber Q-switched laser at 1 μm[J]. Optics Letters, 32, 897-899(2007).

    [39] Zhang Y F, Yang C S, Li C et al. Linearly frequency-modulated pulsed single-frequency fiber laser at 1083 nm[J]. Optics Express, 24, 3162-3167(2016).

    [40] Wang X L, Zhou P, Su R T et al. A 280 W high average power, single-frequency all-fiber nanosecond pulsed laser[J]. Laser Physics, 23, 015101(2013).

    [41] Deng Y, Yao B Q, Ju Y L et al. A diode-pumped 1617 nm single longitudinal mode Er∶YAG laser with intra-cavity etalons[J]. Chinese Physics Letters, 31, 074202(2014).

    [42] Fujita E, Mashiko Y, Asaya S et al. High power narrow-linewidth linearly-polarized 1610 nm Er∶Yb all-fiber MOPA[J]. Optics Express, 24, 26255-26260(2016). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-24-23-26255

    [43] Khamis M A, Ennser K. Theoretical model of a thulium-doped fiber amplifier pumped at 1570 nm and 793 nm in the presence of cross relaxation[J]. Journal of Lightwave Technology, 34, 5675-5681(2016). http://ieeexplore.ieee.org/document/7752850/

    [44] Spiegelberg C, Geng J, Hu Y et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)[J]. Journal of Lightwave Technology, 22, 57-62(2004).

    [45] Yang C S, Guan X C, Zhao Q L et al. 15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm[J]. Optics Express, 26, 12863-12869(2018). http://www.ncbi.nlm.nih.gov/pubmed/29801319

    [46] Yang C S, Xu S H, Mo S P et al. 109 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm[J]. Optics Express, 21, 12546-12551(2013). http://dx.doi.org/10.1364/oe.21.012546

    [47] Bai X L, Sheng Q, Zhang H W et al. High-power all-fiber single-frequency erbium-ytterbium co-doped fiber master oscillator power amplifier[J]. IEEE Photonics Journal, 7, 7103106(2015).

    [48] Creeden D, Pretorius H, Limongelli J et al. Single frequency 1560 m Er∶Yb fiber amplifier with 207 W output power and 50.5% slope efficiency[J]. Proceedings of SPIE, 9728, 97282L(2016).

    [49] Guan X C, Zhao Q L, Lin W et al. High-efficiency and high-power single-frequency fiber laser at 16 μm based on cascaded energy-transfer pumping[J]. Photonics Research, 8, 414-419(2020). http://www.opticsjournal.net/Articles/Abstract?aid=OJ5389d0a2bb599ede

    [50] Taccheo S, de Geronimo G, Laporta P et al. Intensity noise reduction in a single-frequency ytterbium-codoped erbium laser[J]. Optics Letters, 21, 1747-1749(1996).

    [51] Danion G, Bondu F, Loas G et al. GHz bandwidth noise eater hybrid optical amplifier: design guidelines[J]. Optics Letters, 39, 4239-4242(2014).

    [52] Zhao Q L, Xu S H, Zhou K J et al. Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser[J]. Optics Letters, 41, 1333-1335(2016). http://www.ncbi.nlm.nih.gov/pubmed/27192229

    [53] Yang C S, Guan X C, Zhao Q L et al. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 15 μm MOPA laser[J]. Optics Express, 25, 13324-13331(2017).

    [54] Kéfélian F, Jiang H F, Lemonde P et al. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line[J]. Optics Letters, 34, 914-916(2009). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-34-7-914

    [55] Dong J, Hu Y Q, Huang J C et al. Subhertz linewidth laser by locking to a fiber delay line[J]. Applied Optics, 54, 1152-1156(2015).

    [56] Li C, Xu S H, Huang X et al. All-optical frequency and intensity noise suppression of single-frequency fiber laser[J]. Optics Letters, 40, 1964-1967(2015).

    [57] Mo S P, Huang X, Xu S H et al. 600-Hz linewidth short-linear-cavity fiber laser[J]. Optics Letters, 39, 5818-5820(2014).

    [58] Wu Z S. Research on the noise suppression of 1.5 μm single-frequency fiber laser[D]. Guangzhou: South China University of Technology, 28-36(2019).

    [59] Song Y W, Havstad S A, Starodubov D et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG[J]. IEEE Photonics Technology Letters, 13, 1167-1169(2001).

    [60] Yang C L, Xia L, Wang Y W et al. Wavelength tunable single longitudinal mode fiber laser pinned to 25 GHz spacing[J]. Microwave and Optical Technology Letters, 56, 2404-2406(2014). http://onlinelibrary.wiley.com/doi/10.1002/mop.28604

    [61] Zhang Y N, Zhang Y F, Zhao Q L et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser[J]. Optics Express, 24, 26209-26214(2016).

    [62] Leigh M, Shi W, Zong J et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core[J]. Applied Physics Letters, 92, 181108(2008). http://scitation.aip.org/content/aip/journal/apl/92/18/10.1063/1.2917470

    [63] Petersen E B, Shi W, Nguyen D T et al. Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers[J]. Optics Letters, 35, 2170-2172(2010).

    [64] Kaneda Y, Hu Y D, Spiegelberg C et al. Single-frequency, all-fiber Q-switched laser at 1550-nm. [C]∥Advanced Solid-State Photonics, Santa Fe, New Mexico. Washington, D.C.: OSA, PDP6(2004).

    [65] Li K Y, Xu S H, Deng H Q et al. Multi-wavelength, passively Q-switched, single-frequency fiber laser[J]. IEEE Photonics Technology Letters, 31, 1479-1482(2019).

    [66] Shi W, Petersen E B, Leigh M et al. High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band[J]. Optics Express, 17, 8237-8245(2009).

    [67] Petersen E, Shi W, Chavez-Pirson A et al. High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses[J]. Applied Optics, 51, 531-534(2012). http://www.ncbi.nlm.nih.gov/pubmed/22330284

    [68] Lippert E, Rustad G, Nicolas S et al. Fibre-laser-pumped mid-infrared source[J]. Proceedings of SPIE, 5620, 56-62(2004).

    [69] Clément Q, Melkonian J M, Barria J B et al. Tunable optical parametric amplification of a single frequency quantum cascade laser around 8 μm in ZnGeP2. [C]∥Advanced Solid-State Lasers Congress, Paris. Washington, D.C.: OSA, 4046-4054(2013).

    [70] Stutzki F, Gaida C, Gebhardt M et al. 152 W average power Tm-doped fiber CPA system[J]. Optics Letters, 39, 4671-4674(2014).

    [71] Goodno G D, Book L D, Rothenberg J E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier[J]. Optics Letters, 34, 1204-1206(2009). http://www.ncbi.nlm.nih.gov/pubmed/19370118

    [72] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 29, 1503-1505(2004).

    [73] Geng J H, Wu J F, Jiang S B et al. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm[J]. Optics Letters, 32, 355-357(2007).

    [74] Gapontsev D, Platonov N, Meleshkevich M et al. 20 W single-frequency fiber laser operating at 1.93 μm[C]∥2007 Conference on Lasers and Electro-Optics (CLEO), May 6-11, 2007, Baltimore, MD, USA., 1-2(2007).

    [75] Guan X C, Yang C S, Gu Q et al. 55 W kilohertz-linewidth core- and in-band-pumped linearly polarized single-frequency fiber laser at 1950 nm[J]. Optics Letters, 45, 2343-2346(2020). http://www.researchgate.net/publication/340073741_55_W_kHz-linewidth_core-_and_in-band-pumped_linearly-polarized_single-frequency_fiber_laser_at_1950_nm

    [76] Yang C S, Chen D, Xu S H et al. Short all Tm-doped germanate glass fiber MOPA single-frequency laser at 1.95 μm[J]. Optics Express, 24, 10956-10961(2016). http://www.ncbi.nlm.nih.gov/pubmed/27409917

    [77] Wu J F, Yao Z D, Zong J et al. Highly efficient high-power thulium-doped germanate glass fiber laser[J]. Optics Letters, 32, 638-640(2007).

    [78] Henderson S W. Suni P J M, Hale C P, et al. Coherent laser radar at 2 μm using solid-state lasers[J]. IEEE Transactions on Geoscience and Remote Sensing, 31, 4-15(1993).

    [79] Yu J R, Trieu B C, Modlin E A et al. 1 J/pulse Q-switched 2 μm solid-state laser[J]. Optics Letters, 31, 462-464(2006).

    [80] Chandra S, Wager M E, Clayton B L et al. 2-μm-pumped 8-12-μm OPO source for remote chemical sensing[J]. Proceedings of SPIE, 4036, 200-208(2000). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1312358

    [81] Geng J H, Wang Q, Jiang Z et al. Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm[J]. Optics Letters, 36, 2293-2295(2011).

    [82] Fang Q, Shi W, Kieu K et al. High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling[J]. Optics Express, 20, 16410-16420(2012).

    [83] Wang X, Jin X X, Zhou P et al. 105 W ultra-narrowband nanosecond pulsed laser at 2 μm based on monolithic Tm-doped fiber MOPA[J]. Optics Express, 23, 4233-4241(2015).

    [84] Anquez F, Courtade E, Sivéry A et al. A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm[J]. Optics Express, 18, 22928-22936(2010).

    [85] Wanner M, Avram M, Gagnon D et al. Effects of non-invasive, 1210 nm laser exposure on adipose tissue: results of a human pilot study[J]. Lasers in Surgery and Medicine, 41, 401-407(2009). http://onlinelibrary.wiley.com/doi/10.1002/lsm.20785

    [86] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [87] Hudson D D, Williams R J, Withford M J et al. Single-frequency fiber laser operating at 2.9 μm[J]. Optics Letters, 38, 2388-2390(2013). http://www.opticsinfobase.org/abstract.cfm?URI=ol-38-14-2388

    [88] Bernier M, Michaud-Belleau V, Levasseur S et al. All-fiber DFB laser operating at 2.8 μm[J]. Optics Letters, 40, 81-84(2015).

    [89] Zhu X S, Zong J, Miller A et al. Single-frequency Ho 3+-doped ZBLAN fiber laser at 1200 nm[J]. Optics Letters, 37, 4185-4187(2012).

    [90] Geng J H, Wang Q, Luo T et al. Single-frequency gain-switched Ho-doped fiber laser[J]. Optics Letters, 37, 3795-3797(2012).

    [91] Mollaee M, Zhu X S, Zong J et al. Single-frequency blue laser fiber amplifier[J]. Optics Letters, 43, 423-426(2018). http://www.ncbi.nlm.nih.gov/pubmed/29400805

    [92] Li W S, Wu J J, Cai Z P et al. Directly blue diode-pumped green self-Q-switched Ho 3+-doped fluoride all-fiber laser at ~550 nm[J]. Journal of Lightwave Technology, 37, 5727-5732(2019).

    Changsheng Yang, Xu Cen, Shanhui Xu, Zhongmin Yang. Research Progress of Single-Frequency Fiber Laser[J]. Acta Optica Sinica, 2021, 41(1): 0114002
    Download Citation