• Laser & Optoelectronics Progress
  • Vol. 59, Issue 3, 0314001 (2022)
Yaobin Li1、2, Ming Li1、2, pingping Qiu1、2, Weinian Yan1、2, Ruiwen Jia1、2, and Qiang Kan1、2、*
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-Electronics Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP2022259.0314001 Cite this Article Set citation alerts
    Yaobin Li, Ming Li, pingping Qiu, Weinian Yan, Ruiwen Jia, Qiang Kan. Design of High Power Low Loss 852 nm Fabry-Perot Laser[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0314001 Copy Citation Text show less
    References

    [1] Bauch A. Caesium atomic clocks: function, performance and applications[J]. Measurement Science and Technology, 14, 1159-1173(2003).

    [2] Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 47, 0500001(2020).

    [3] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).

    [4] Ligeret V, Vermersch F J, Bansropun S et al. High-power Al-free active region (λ=852 nm) DFB laser diodes for atomic clocks and interferometry applications[C], 1-2(2006).

    [5] Vermersch F J, Ligeret V, Bansropun S et al. High-power narrow linewidth distributed feedback lasers with an aluminium-free active region emitting at 852 nm[J]. IEEE Photonics Technology Letters, 20, 1145-1147(2008).

    [6] Xu H W, Ning Y Q, Zeng Y G et al. Design and epitaxial growth of quantum-well for 852 nm laser diode[J]. Optics and Precision Engineering, 21, 590-597(2013).

    [7] Liao Y R. The fabrication and analysis of characteristics of a 852 nm semiconductor lasers[D](2017).

    [8] Garbuzov D, Xu L, Forrest S R et al. 1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power[J]. Electronics Letters, 32, 1717-1719(1996).

    [9] Wang Y Z, Li T, Hao E J et al. Optimization studies of single transverse mode 1.55 μm ridge-waveguide lasers[C], NSa3A.40(2013).

    [10] Lysevych M, Tan H H, Karouta F et al. Effect of active region position in Fabry-Perot single transverse mode broad-waveguide InGaAsP/InP lasers[J]. Optics Express, 22, 8156-8164(2014).

    [11] Ke Q, Tan S Y, Liu S T et al. Fabrication and optimization of 1.55 μm InGaAsP/InP high-power semiconductor diode laser[J]. Journal of Semiconductors, 36, 094010(2015).

    [12] Belenky G, Shterengas L, Trussell W et al. Effect of heterobarrier leakage on the performance of high power 1.5-μm InGaAsP multiple quantum well lasers[C], 872-873(2000).

    [13] Lu D, Yang Q L, Wang H et al. Review of semiconductor distributed feedback lasers in the optical communication band[J]. Chinese Journal of Lasers, 47, 0701001(2020).

    [14] Ke Q, Tan S Y, Zhai T et al. Characteristic optimization of 1.55-μm InGaAsP/InP high-power diode laser[J]. Proceedings of SPIE, 9266, 92660Z(2014).

    [15] Pikhtin N A, Slipchenko S O, Sokolova Z N et al. Internal optical loss in semiconductor lasers[J]. Semiconductors, 38, 360-367(2004).

    [16] Chong F, Wang J, Xiong C et al. Optimum the thickness of p-waveguide layer for high conversion efficiency diode lasers[J]. Acta Optica Sinica, 29, 3419-3423(2009).

    Yaobin Li, Ming Li, pingping Qiu, Weinian Yan, Ruiwen Jia, Qiang Kan. Design of High Power Low Loss 852 nm Fabry-Perot Laser[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0314001
    Download Citation