• Matter and Radiation at Extremes
  • Vol. 6, Issue 6, 068401 (2021)
Tingting Zhang, Yuechao Wang, Jiawei Xian, Shuaichuang Wang, Jun Fang, Suqing Duan, Xingyu Gao, Haifeng Song, and Haifeng Liua)
Author Affiliations
  • Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • show less
    DOI: 10.1063/5.0059360 Cite this Article
    Tingting Zhang, Yuechao Wang, Jiawei Xian, Shuaichuang Wang, Jun Fang, Suqing Duan, Xingyu Gao, Haifeng Song, Haifeng Liu. Effect of the projector augmented wave potentials on the simulation of thermodynamic properties of vanadium[J]. Matter and Radiation at Extremes, 2021, 6(6): 068401 Copy Citation Text show less
    References

    [1] J.Chen, B.Chen, H.-K.Mao et al. Recent advances in high-pressure science and technology. Matter Radiat. Extremes, 1, 59-75(2016).

    [2] Q.Zhang, H.Song, H.Liu et al. Validation for equation of state in wide regime: Copper as prototype. Matter Radiat. Extremes, 1, 123(2016).

    [3] J.Nilsen, A. L.Kritcher, M. E.Martin et al. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100 s of Mbar using spherically converging shock waves in a NIF hohlraum. Matter Radiat. Extremes, 5, 018401(2020).

    [4] H.Wang, S.Zhang, P.Zhang, W.Kang, X. T.He. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas. Phys. Plasmas, 23, 042707(2016).

    [5] P.Hohenberg, W.Kohn. Inhomogeneous electron gas. Phys. Rev., 136, B864(1964).

    [6] L. J.Sham, W.Kohn. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133(1965).

    [7] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953(1994).

    [8] P. E.Bl?chl, J.Schimpl, C. J.F?rst. Projector augmented wave method: Ab initio molecular dynamics with full wave functions. Bull. Mater. Sci., 26, 33(2003).

    [9] Y.Zeng, A. R.Tackett, R. B.Dunning, G. E.Matthews, N. A. W.Holzwarth. Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids. Phys. Rev. B, 55, 2005(1997).

    [10] G. E.Matthews, A. R.Tackett, N. A. W.Holzwarth. A projector augmented wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis. Comput. Phys. Commun., 135, 348(2001).

    [11] G.Kresse, D.Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758(1999).

    [12] S.Blügel, W.Kromen, K.Schroeder.

    [13] X.Gonze, F.Bruneval, M.Torrent, J.-P.Crocombette, B.Dorado, F.Jollet. Consistent treatment of charged systems within periodic boundary conditions: The projector augmented-wave and pseudopotential methods revisited. Phys. Rev. B, 89, 045116(2014).

    [14] G.Van Oost, S.Cottenier, K.Lejaeghere, V.Van Speybroeck. Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals. Crit. Rev. Solid State Mater. Sci., 39, 1-24(2014).

    [15] T.Bj?rkman, G.Bihlmayer, K.Lejaeghere et al. Reproducibility in density functional theory calculations of solids. Science, 351, aad3000(2016).

    [16] K. F.Garrity, J. W.Bennett, D.Vanderbilt, K. M.Rabe. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci., 81, 446-452(2014).

    [17] M.Topsakal, R. M.Wentzcovitch. Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu). Comput. Mater. Sci., 95, 263-270(2014).

    [18] C.Cazorla, M. J.Gillan, D.Alfè, S.Taioli. Ab initio melting curve of molybdenum by the phase coexistence method. J. Chem. Phys., 126, 194502(2007).

    [19] D. G.Pettifor. Theory of energy bands and related properties of 4d transition metals. I. Band parameters and their volume dependence. J. Phys. F: Met. Phys., 7, 613(1977).

    [20] J. A.Moriarty. Ultrahigh-pressure structural phase transitions in Cr, Mo, and W. Phys. Rev. B, 45, 2004(1992).

    [21] G. B.Grad et al. Electronic structure and chemical bonding effects upon the bcc to Ω phase transition: Ab initio study of Y, Zr, Nb, and Mo. Phys. Rev. B, 62, 12743(2000).

    [22] J.Furthmüller, G.Kresse, M.Marsman.

    [23] P.Soderlind, A.Landa, L. H.Yang. Ab initio phase stability at high temperatures and pressures in the V-Cr system. Phys. Rev. B, 89, 020101(R)(2014).

    [24] S.Wang, S.Duan, T.Zhang, H.Liu, H.Song. Melting curve of vanadium up to 470 GPa simulated by ab initio molecular dynamics. J. Appl. Phys., 126, 205901(2019).

    [25] D.Santamaria-Perez, J. E.Proctor, H.Cynn, M.Mezouar, L.Burakovsky, D.Errandonea, S. G.MacLeod. Melting curve and phase diagram of vanadium under high-pressure and high-temperature conditions. Phys. Rev. B, 100, 094111(2019).

    [26] S.Root, S. D.Crockett, K. R.Cochrane, P.Kalita, P. F.Weck, T.Ao. Shock compression of vanadium at extremes: Theory and experiment. Phys. Rev. B, 102, 184109(2020).

    [27] N. P.Salke, Z.Gao, Y.Zhang, Q.Wang, J.-F.Lin, E.Greenberg, V. B.Prakapenka, Y.Tan, H. Y.Geng, T.Sekine, J.Li. Melting curve of vanadium up to 256 GPa: Consistency between experiments and theory. Phys. Rev. B, 102, 214104(2020).

    [28] G.Kresse, J.Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47, 558(1993).

    [29] G.Kresse, J.Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15-50(1996).

    [30] J.Furthmüller, G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169(1996).

    [31] D. D.Koelling, W. E.Picket, A. H.MacDonald. A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions. J. Phys. C: Solid State Phys., 13, 2675(1980).

    [32] A. J.Freeman, H.Krakauer, M.Weinert, E.Wimmer. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B, 24, 864(1981).

    [33] J.Luitz, D.Kvasnicka, G. K. H.Madsen, K.Schwarz, P.Blaha. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties(2001).

    [34] K.Schwarz. DFT calculations of solids with LAPW and WIEN2k. J. Solid State Chem., 176, 319(2003).

    [35] D. M.Ceperley. Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions. Phys. Rev. B, 18, 3126(1978).

    [36] B. J.Alder, D. M.Ceperley. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45, 566(1980).

    [37] R. O.Jones, O.Gunnarsson. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 61, 689(1989).

    [38] J. P.Perdew, M.Ernzerhof, K.Burke. Generalized gradient approximation made simple. 1396, 78, 3865(1997).

    [39] Y.Wang, J. P.Perdew. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. 3399, 40, 8800(R)(1989).

    [40] A. D.Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098(1988).

    [41] Y.Wang, J. P.Perdew. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B, 56, 7018(1997).

    [42] N. D.Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev. A, 137, A1441(1965).

    [43] R.Ahuja, J.Shu, Y.Ding et al. Structural phase transition of vanadium at 69 GPa. Phys. Rev. Lett., 98, 085502(2007).

    [44] J. E.Klepeis, A.Landa, P.S?derlind, R. E.Rudd, B.Lee. Theoretical confirmation of a high-pressure rhombohedral phase in vanadium metal. Phys. Rev. B, 75, 180101(R)(2007).

    [45] Y. X.Wang, Q.Wu, X. R.Chen, H. Y.Geng. Stability of rhombohedral phases in vanadium at high-pressure and high-temperature: First-principles investigations. Sci. Rep., 6, 32419(2016).

    [46] N.Skorodumova, A.Rosengren, A.Belonoshko, B.Johansson. Melting and critical superheating. Phys. Rev. B, 73, 012201(2006).

    [47] L.Burakovsky, A. B.Belonoshko, S. I.Simak, S. P.Chen, D. L.Preston, A. S.Mikhaylushkin, D. C.Swift, B.Johansson. Molybdenum at high pressure and temperature: Melting from another solid phase. Phys. Rev. Lett., 100, 135701(2008).

    [48] L.Vitos, O.Velikokhatnyi, J.Klepeis, A.Landa, P.S?derlind, A.Ruban, I.Naumov. Ab initio calculations of elastic constants of the bcc V–Nb system at high pressures. J. Phys. Chem. Solids, 67, 2056(2006).

    [49] C.Kittel. Introduction to Solid State Physics, 648(1986).

    [50] Y.Yu, Y.Li, Q.Wu, C.Dai, Y.Tan, X.Li, H.Tan. Phase transition and strength of vanadium under shock compression up to 88 GPa. Appl. Phys. Lett., 105, 201910(2014).

    [51] V.López-Flores, M. A.Roldan, M. D.Alcala, A.Ortega, C.Real. Mechanochemical synthesis of vanadium nitride. J. Eur. Ceram. Soc., 30, 2099(2010).

    [52] M. H.Manghnani, K.Takemura, H.Manghnani M., J.Nellis W., M. and, W. J.Nellis, H.Manghnani M., J.Nellis W., M. and, M. F.Nicol, 443-444(1999).

    [53] A.Landa, P.S?derlind, H.Cynn, D. A.Young. Zero-Kelvin compression isotherms of the elements 1 ≤ Z ≤ 92 to 100 GPa. J. Phys. Chem. Ref. Data, 45, 043101(2016).

    [54] G. M.White, P. H.Berens, K. R.Wilson, D. H. J.Mackay. Thermodynamics and quantum corrections from molecular dynamics for liquid water. J. Chem. Phys., 79, 2375(1983).

    [55] J. W.Zwanziger. Computation of NMR observables: Consequences of projector-augmented wave sphere overlap. Solid State Nucl. Magn. Reson., 80, 14-18(2016).

    Tingting Zhang, Yuechao Wang, Jiawei Xian, Shuaichuang Wang, Jun Fang, Suqing Duan, Xingyu Gao, Haifeng Song, Haifeng Liu. Effect of the projector augmented wave potentials on the simulation of thermodynamic properties of vanadium[J]. Matter and Radiation at Extremes, 2021, 6(6): 068401
    Download Citation