• Laser & Optoelectronics Progress
  • Vol. 58, Issue 19, 1929001 (2021)
Hongyi Chen1、2 and Yingchao Li2、*
Author Affiliations
  • 1School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun , Jilin 130022, China
  • 2Jilin Province Key Laboratory of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun , Jilin 130022, China
  • show less
    DOI: 10.3788/LOP202158.1929001 Cite this Article Set citation alerts
    Hongyi Chen, Yingchao Li. Analysis of Near-Infrared Polarization Characteristics of Typical Satellite Surface Materials[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1929001 Copy Citation Text show less
    References

    [1] Huang Z G, Wang J L, Wang H J et al. Analysis and verification of infrared K band daytime detection ability[J]. Infrared and Laser Engineering, 47, 0804001(2018).

    [2] Kissell K E. Polarization effects in the observation of artificial satellites[M]. Gehrels T. Planets, stars and nebulae studied with photopolarimetry, 371-380(1974).

    [3] Priest R G, Meier S R. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces[J]. Optical Engineering, 41, 988-993(2002).

    [4] Thilak V, Voelz D G, Creusere C D. Polarization-based index of refraction and reflection angle estimation for remote sensing applications[J]. Applied Optics, 46, 7527-7536(2007).

    [5] Yang Y F, Wu Z S, Cao Y H. Practical six-parameter bidirectional reflectance distribution function model for rough surface[J]. Acta Optica Sinica, 32, 0229001(2012).

    [6] Minnaert M. The reciprocity principle in lunar photometry[J]. The Astrophysical Journal Letters, 93, 403-410(1941).

    [7] Nicodemus F E. Reflectance nomenclature and directional reflectance and emissivity[J]. Applied Optics, 9, 1474-1475(1970).

    [8] Chen W L, Li J W, Sun Z Q et al. Analysis of visible polarization characteristics of typical satellite surface materials[J]. Acta Optica Sinica, 38, 1026001(2018).

    [9] Ma S, Bai T Z, Cao F M et al. Infrared polarimetric scene simulation based on bidirectional reflectance distribution function model[J]. Acta Optica Sinica, 29, 3357(2009).

    [10] Liu Y, Shi H D, Jiang H L et al. Infrared polarization properties of targets with rough surface[J]. Chinese Optics, 13, 459-471(2020).

    [11] Yang M, Fang Y H, Wu J et al. Multiple-component polarized bidirectional reflectance distribution function model for painted surfaces based on Kubelka-Munk theory[J]. Acta Optica Sinica, 38, 0126002(2018).

    [12] le Hors L, Hartemann P, Dolfi D et al. Phenomenological model of paints for multispectral polarimetric imaging[J]. Proceedings of SPIE, 4370, 94-105(2001).

    [13] Wang J J, Yang J, Li S et al. Measurement error analysis of bidirectional reflectance distribution functions[J]. Acta Optica Sinica, 36, 0312004(2016).

    [14] Zhu D R, Feng K K, Wang F B et al. Six-parameter polarized bidirectional reflectance distribution function model for rough surfaces[J]. Laser & Optoelectronics Progress, 57, 092601(2020).

    [15] Zhang Q Z, Luo T S, Xie T G. A measurement method of complex refractive index for absorbing medium[J]. Chinese Journal of Lasers, 44, 1104002(2017).

    [16] Yuan Y, Jin D, Su L J. Optimization modeling and verification of bidirectional reflectance distribution function for rough surfaces[J]. Laser & Optoelectronics Progress, 55, 052901(2018).

    [17] Li B, Tong S F, Zhang L et al. Influence of horizontal atmospheric visibility on deep-space laser communication rate[J]. Acta Optica Sinica, 37, 1006003(2017).

    Hongyi Chen, Yingchao Li. Analysis of Near-Infrared Polarization Characteristics of Typical Satellite Surface Materials[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1929001
    Download Citation