• Laser & Optoelectronics Progress
  • Vol. 58, Issue 2, 0215008 (2021)
Hong Xiao, Chuan Tian*, Yi Zhang, Bo Wei, and Jiaqi Kang
Author Affiliations
  • School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • show less
    DOI: 10.3788/LOP202158.0215008 Cite this Article Set citation alerts
    Hong Xiao, Chuan Tian, Yi Zhang, Bo Wei, Jiaqi Kang. Stereo Matching Algorithm Based on Improved Census Transform and Gradient Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0215008 Copy Citation Text show less
    References

    [1] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 47, 7-42(2002).

    [2] Cheng Z Y, Lu R S, Mao C L. Measurement method of three-dimensional shape of bright surface with binocular stereo vision[J]. Laser & Optoelectronics Progress, 57, 071202(2020).

    [3] Kolmogorov V, Zabih R. Computing visual correspondence with occlusions using graph cuts. [C]∥Proceedings Eighth IEEE International Conference on Computer Vision, July 7-14, 2001, Vancouver, BC, Canada. New York: IEEE, 508-515(2001).

    [4] Veksler O. Stereo correspondence by dynamic programming on a tree. [C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 20-25, 2005, San Diego, CA, USA. New York: IEEE, 384-390(2005).

    [5] Felzenszwalb P F, Huttenlocher D P. Efficient belief propagation for early vision[J]. International Journal of Computer Vision, 70, 41-54(2006).

    [6] Holland J H. Genetic algorithms[J]. American Scientist, 267, 66-72(1992).

    [7] Yang Q X. A non-local cost aggregation method for stereo matching. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 1402-1409(2012).

    [8] Hirschmuller H, Scharstein D. Evaluation of stereo matching costs on images with radiometric differences[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 1582-1599(2009).

    [9] Pollard S B, Mayhew J E, Frisby J P. PMF: a stereo correspondence algorithm using a disparity gradient limit[J]. Perception, 14, 449-470(1985).

    [10] Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 650-656(2006).

    [11] Hosni A, Rhemann C, Bleyer M et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 504-511(2013).

    [12] Kong L Y, Zhu J P, Ying S C. Stereo matching based on guidance image and adaptive support region[J]. Acta Optica Sinica, 40, 0915001(2020).

    [13] Ma R H, Zhu F, Wu Q X et al. Dense stereo matching algorithm based on image segmentation[J]. Acta Optica Sinica, 39, 0315001(2019).

    [14] Stein F. Efficient computation of optical flow using the census transform[M]. ∥Rasmussen C E, Bülthoff H H, Schölkopf B, et al. Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science. Cham: Springer, 3175, 79-86(2004).

    [15] Zhou W W, Jin W G. Novel stereo matching algorithm for adaptive weight Census transform[J]. Computer Engineering and Applications, 52, 192-197, 215(2016).

    [16] Zhang K, Fang Y Q, Min D B et al[2020-06-18]. Cross-scale cost aggregation for stereo matching [2020-06-18].https: ∥arxiv., org/abs/1403, 0316.

    [17] Min D B, Lu J B, Do M N. A revisit to cost aggregation in stereo matching: how far can we reduce its computational redundancy?. [C]∥2011 International Conference on Computer Vision, November 6-13, 2011, Barcelona, Spain. New York: IEEE, 1567-1574(2011).

    Hong Xiao, Chuan Tian, Yi Zhang, Bo Wei, Jiaqi Kang. Stereo Matching Algorithm Based on Improved Census Transform and Gradient Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0215008
    Download Citation