• Photonics Research
  • Vol. 7, Issue 3, 246 (2019)
Shuyun Teng*, Qi Zhang, Han Wang, Lixia Liu, and Haoran Lv
Author Affiliations
  • Shandong Provincial Key Laboratory of Optics and Photonic Device & School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • show less
    DOI: 10.1364/PRJ.7.000246 Cite this Article Set citation alerts
    Shuyun Teng, Qi Zhang, Han Wang, Lixia Liu, Haoran Lv. Conversion between polarization states based on a metasurface[J]. Photonics Research, 2019, 7(3): 246 Copy Citation Text show less
    References

    [1] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [3] L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [4] B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, T. Pertsch. Spatial and spectral light shaping with metamaterials. Adv. Mater., 24, 6300-6304(2012).

    [5] G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [6] R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, K. Y. Zhou, J. L. Liu, S. L. Qu, S. T. Liu, J. Gao. Arbitrary focusing lens by holographic metasurface. Photon. Res., 3, 252-255(2015).

    [7] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [8] X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, X. Zhang. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314(2015).

    [9] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [10] F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, A. V. Kildishev. Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach. ACS Nano, 9, 4111-4119(2015).

    [11] Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, J. G. Tian. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photon., 4, 2061-2069(2017).

    [12] N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, A. Broadband. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett., 12, 6328-6333(2012).

    [13] M. Kang, T. H. Feng, H. T. Wang, J. Li. Wave front engineering from an array of thin aperture antennas. Opt. Express, 20, 15882-15890(2012).

    [14] Y. Zhao, A. Alù. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B, 84, 205428(2011).

    [15] Y. Zhao, A. Alù. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett., 13, 1086-1091(2013).

    [16] E. Hasman, V. Kleiner, G. Biener, A. Niv. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett., 82, 328-330(2003).

    [17] C. Menzel, C. Rockstuhl, F. Lederer. An advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A, 82, 053811(2010).

    [18] F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, J. Zhao. Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer. Photon. Res., 6, 157-161(2018).

    [19] P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, J. Tian. Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces. Opt. Lett., 40, 3229-3232(2015).

    [20] F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, X. Chen. Vector vortex beam generation with a single plasmonic metasurface. ACS Photon., 3, 1558-1563(2016).

    [21] Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, S. Y. Teng. Vector beam generation based on the nanometer-scale rectangular holes. Opt. Express, 25, 33480-33486(2017).

    [22] Q. Zhang, H. Wang, L. X. Liu, S. Y. Teng. Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination. Opt. Express, 26, 24145-24153(2018).

    [23] A. Taflove, S. C. Hagness. Computational Electro Dynamics: The Finite-Difference Time-Domain Method(2000).

    [24] E. D. Palik. Handbook of Optical Constants of Solids(1985).

    CLP Journals

    [1] Zhen Mou, Changda Zhou, Peiyao Lu, Qingyang Yue, Shuyun Wang, Shuyun Teng. Structured vortices generated by metasurface holography[J]. Photonics Research, 2021, 9(10): 2125

    Shuyun Teng, Qi Zhang, Han Wang, Lixia Liu, Haoran Lv. Conversion between polarization states based on a metasurface[J]. Photonics Research, 2019, 7(3): 246
    Download Citation