• Acta Optica Sinica
  • Vol. 37, Issue 12, 1213001 (2017)
Gongli Xiao1、2、*, Li Liu1, Hongyan Yang3, Xingguo Jiang1, Hongqing Wang1, Xiaogang Liu1, Haiou Li1, Fabi Zhang1, and Tao Fu1
Author Affiliations
  • 1 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • 2 Guangxi Experiment Center of Information Science, Guilin, Guangxi 541004, China
  • 3 School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • show less
    DOI: 10.3788/AOS201737.1213001 Cite this Article Set citation alerts
    Gongli Xiao, Li Liu, Hongyan Yang, Xingguo Jiang, Hongqing Wang, Xiaogang Liu, Haiou Li, Fabi Zhang, Tao Fu. Light Transmission Characteristics of Metal Curved Waveguide Based on Microcavity Coupling Structures[J]. Acta Optica Sinica, 2017, 37(12): 1213001 Copy Citation Text show less

    Abstract

    A novel plasma curved waveguide filter based on microcavity coupling structure is presented, which consists of two rectangular waveguide and a rectangular resonant cavity. When light passes through the structure, surface plasmon polaritons (SPPs) can be excited. The propagation properties of the SPPs with this structure are investigated by the finite difference time domain (FDTD) method. The results show that, compared with the traditional straight waveguide structure, the single microcavity curved waveguide structure can generate stronger resonant interaction and higher coupling effect for the bilateral coupling effect induced by the structure. The numerical simulation results show that the resonant wavelength of the filter can be adjusted linearly by changing the cavity length of the resonator. In addition, based on the above design idea, a dual microcavity structure is also proposed. The structure consists of a bent waveguide and two resonant cavities at left and right, which can be used to produce dynamically tunable plasma induced transparency by the superposition of two microcavity transmission waves.
    Gongli Xiao, Li Liu, Hongyan Yang, Xingguo Jiang, Hongqing Wang, Xiaogang Liu, Haiou Li, Fabi Zhang, Tao Fu. Light Transmission Characteristics of Metal Curved Waveguide Based on Microcavity Coupling Structures[J]. Acta Optica Sinica, 2017, 37(12): 1213001
    Download Citation