• Photonics Research
  • Vol. 4, Issue 5, 0173 (2016)
Ahmad A. Darweesh1, Stephen J. Bauman1, and Joseph B. Herzog1、2、*
Author Affiliations
  • 1Microelectronics-Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • 2Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • show less
    DOI: 10.1364/prj.4.000173 Cite this Article Set citation alerts
    Ahmad A. Darweesh, Stephen J. Bauman, Joseph B. Herzog. Improved optical enhancement using double-width plasmonic gratings with nanogaps[J]. Photonics Research, 2016, 4(5): 0173 Copy Citation Text show less
    References

    [1] F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, A. Dereux. Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys., 3, 324-328(2007).

    [2] Y. Jiao, L. H. Liu, P.-F. Hsu. Widening absorption band of grating structure with complex dual-groove grating. J. Heat Transfer, 135, 032701(2013).

    [3] J. Feng, T. Okamoto, S. Kawata. Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling. Opt. Lett., 30, 2302-2304(2005).

    [4] J. M. Steele, Z. Liu, Y. Wang, X. Zhang. Resonant and non-resonant generation and focusing of surface plasmons with circular gratings. Opt. Express, 14, 5664-5670(2006).

    [5] Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang. Focusing surface plasmons with a plasmonic lens. Nano Lett., 5, 1726-1729(2005).

    [6] Z. Sun, Y. S. Jung, H. K. Kim. Role of surface plasmons in the optical interaction in metallic gratings with narrow slits. Appl. Phys. Lett., 83, 3021-3023(2003).

    [7] A. Kubo, Y. S. Jung, H. K. Kim, H. Petek. Femtosecond microscopy of localized and propagating surface plasmons in silver gratings. J. Phys. B, 40, S259-S272(2007).

    [8] K. M. Byun, S. J. Kim, D. Kim. Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings. Appl. Opt., 46, 5703-5708(2007).

    [9] J. Lu, C. Petre, E. Yablonovitch, J. Conway. Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO_2 interface. J. Opt. Soc. Am. B, 24, 2268-2272(2007).

    [10] J. Guo, Y. Tu, L. Yang, L. Wang, B. Wang. Design of a double grating-coupled surface plasmon color filter. Proc. SPIE, 9744, 97440C(2016).

    [11] C. L. Tan, V. V. Lysak, K. Alameh, Y. T. Lee. Absorption enhancement of 980  nm MSM photodetector with a plasmonic grating structure. Opt. Commun., 283, 1763-1767(2010).

    [12] J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang, M. Lončar. Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings. Appl. Phys. Lett., 103, 161101(2013).

    [13] A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, N. J. Halas. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun., 4, 1643(2013).

    [14] Y. Mishima, H. Habara, K. A. Tanaka. Two plasmonic mode excitation using a double-step rectangle grating. J. Opt. Soc. Am. B, 32, 1804-1808(2015).

    [15] R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, A. Tünnermann. Scattering dark states in multiresonant concentric plasmonic nanorings. ACS Photon., 2, 1085-1090(2015).

    [16] N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, C. Couteau. Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement. Nanospectroscopy, 1, 61-66(2015).

    [17] N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, C. Couteau. A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons. Plasmonics, 11, 175-182(2015).

    [18] C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans. Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl. Phys. Lett., 96, 133302(2010).

    [19] J. N. Munday, H. A. Atwater. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett., 11, 2195-2201(2011).

    [20] J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, Y. Yang. Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode. Adv. Energy Mater., 2, 1203-1207(2012).

    [21] R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, M. L. Brongersma. Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells. Nat. Commun., 4, 2095(2013).

    [22] N.-F. Chiu, C.-D. Yang, Y.-L. Kao, C.-J. Cheng. Design of plasmonic circular grating with broadband absorption enhancements. Proc. SPIE, 9502, 950213(2015).

    [23] A. W. Wark, H. J. Lee, A. J. Qavi, R. M. Corn. Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing. Anal. Chem., 79, 6697-6701(2007).

    [24] K. M. Byun, S. J. Yoon, D. Kim, S. J. Kim. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt. Lett., 32, 1902-1904(2007).

    [25] J. Dostálek, J. Homola. Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions. Sens. Actuators B, 129, 303-310(2008).

    [26] H. J. Lee, A. W. Wark, R. M. Corn. Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings. Analyst, 133, 596-601(2008).

    [27] H. N. Daghestani, B. W. Day. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors, 10, 9630-9646(2010).

    [28] K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, J. Nishii. Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance. Opt. Express, 16, 9781-9790(2008).

    [29] H. Hori, K. Tawa, K. Kintaka, J. Nishii, Y. Tatsu. Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance. Opt. Rev., 16, 216-221(2010).

    [30] X. Cui, K. Tawa, K. Kintaka, J. Nishii. Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array. Adv. Funct. Mater., 20, 945-950(2010).

    [31] Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, H.-B. Sun. Surface plasmon enhanced fluorescence of dye molecules on metal grating films. J. Phys. Chem. C, 115, 12636-12642(2011).

    [32] P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, S. Fan. Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits. Appl. Phys. Lett., 88, 031101(2006).

    [33] T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, X. Luo. Directional excitation of surface plasmons with subwavelength slits. Appl. Phys. Lett., 92, 101501(2008).

    [34] D. Arbel, M. Orenstein. Plasmonic modes in W-shaped metal-coated silicon grooves. Opt. Express, 16, 3114-3119(2008).

    [35] A. Dhawan, M. Canva, T. Vo-Dinh. Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt. Express, 19, 787-813(2011).

    [36] T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, S. I. Bozhevolnyi. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat Commun., 3, 969(2012).

    [37] W. Zhu, M. G. Banaee, D. Wang, Y. Chu, K. B. Crozier. Lithographically fabricated optical antennas with gaps well below 10  nm. Small, 7, 1761-1766(2011).

    [38] X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, S.-H. Oh. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat Commun., 4, 2361(2013).

    [39] X. Chen, C. Ciracì, D. R. Smith, S.-H. Oh. Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities. Nano Lett., 15, 107-113(2015).

    [40] C. Lumdee, B. Yun, P. G. Kik. Gap-plasmon enhanced gold nanoparticle photoluminescence. ACS Photon., 1, 1224-1230(2014).

    [41] D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, D. Natelson. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett., 7, 1396-1400(2007).

    [42] D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, D. Natelson. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol., 5, 732-736(2010).

    [43] H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S.-H. Oh. Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett., 10, 2231-2236(2010).

    [44] J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, B. Das. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms. Biosens. Bioelectron., 44, 191-197(2013).

    [45] A. García-Martín, D. R. Ward, D. Natelson, J. C. Cuevas. Field enhancement in subnanometer metallic gaps. Phys. Rev. B, 83, 193404(2011).

    [46] D. Natelson, Y. Li, J. B. Herzog. Nanogap structures: combining enhanced Raman spectroscopy and electronic transport. Phys. Chem. Chem. Phys., 15, 5262-5275(2013).

    [47] T. Kawawaki, Y. Takahashi, T. Tatsuma. Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling. J. Phys. Chem. C, 117, 5901-5907(2013).

    [48] T. Chen, M. Pourmand, A. Feizpour, B. Cushman, B. M. Reinhard. Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation. J. Phys. Chem. Lett., 4, 2147-2152(2013).

    [49] S. J. Bauman, D. T. Debu, A. M. Hill, E. C. Novak, D. Natelson, J. B. Herzog. Optical nanogap matrices for plasmonic enhancement applications. Proc. SPIE, 9163, 91631A(2014).

    [50] T. K. Manna, S. M. Mahajan. Nanotechnology in the development of photovoltaic cells. International Conference on Clean Electrical Power (ICCEP), 379-386(2007).

    [51] E. T. Yu, D. Derkacs, P. Matheu, D. M. Schaadt. Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices. Proc. SPIE, 7033, 70331V(2008).

    [52] K. Nakayama, K. Tanabe, H. A. Atwater. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett., 93, 121904(2008).

    [53] V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett., 8, 4391-4397(2008).

    [54] N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, J. J. Baumberg. Enhancing solar cells with localized plasmons in nanovoids. Opt. Express, 19, 11256-11263(2011).

    [55] R. Yu, Q. Lin, S.-F. Leung, Z. Fan. Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy, 1, 57-72(2012).

    [56] I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, S. Collin. Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers. ACS Photon., 1, 878-884(2014).

    [57] A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, K. L. Kavanagh. Nanohole-enhanced Raman scattering. Nano Lett., 4, 2015-2018(2004).

    [58] J. M. Baik, S. J. Lee, M. Moskovits. Polarized surface-enhanced raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires. Nano Lett., 9, 672-676(2009).

    [59] A. W. Clark, J. M. Cooper. Nanogap ring antennae as plasmonically coupled SERRS substrates. Small, 7, 119-125(2011).

    [60] W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, X. Wang. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. J. Micromech. Microeng., 22, 125007(2012).

    [61] M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, O. L. Muskens. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett., 14, 346-352(2014).

    [62] Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, N. J. Halas. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun., 5, 1-7(2014).

    [63] M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, R. P. Van Duyne. Molecular plasmonics for nanoscale spectroscopy. Chem. Soc. Rev., 43, 1230-1247(2014).

    [64] R. Gordon, D. Sinton, A. G. Brolo, K. L. Kavanagh. Plasmonic sensors based on nano-holes: technology and integration. Proc. SPIE, 6959, 695913(2008).

    [65] J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, D. Natelson. Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions. Nano Lett., 13, 1359-1364(2013).

    [66] J. Homola. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem., 377, 528-539(2003).

    [67] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442-453(2008).

    [68] I. Abdulhalim, M. Zourob, A. Lakhtakia. Surface plasmon resonance for biosensing: a mini-review. Electromagnetics, 28, 214-242(2008).

    [69] T. Vo-Dinh, H.-N. Wang, J. Scaffidi. Plasmonic nanoprobes for SERS biosensing and bioimaging. J. Biophoton., 3, 89-102(2010).

    [70] K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, C. L. Haynes. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys., 13, 11551-11567(2011).

    [71] A. G. Brolo. Plasmonics for future biosensors. Nat. Photonics, 6, 709-713(2012).

    [72] A. Sivanesan, E. L. Izake, R. Agoston, G. A. Ayoko, M. Sillence. Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids. J. Nanobiotechnol., 13, 43(2015).

    [73] S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, J. B. Herzog. Fabrication of sub-lithography-limited structures via nanomasking technique for plasmonic enhancement applications. IEEE Trans. Nanotechnol., 14, 790-793(2015).

    [74] S. J. Bauman. Fabrication of sub-10  nm metallic structures via nanomasking technique for plasmonic enhancement applications(2015).

    [75] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [76] T. C. Choy. Effective Medium Theory: Principles and Applications(2015).

    [77] J. B. Herzog, M. W. Knight, D. Natelson. Thermoplasmonics: quantifying plasmonic heating in single nanowires. Nano Lett., 14, 499-503(2014).

    [78] C. Saylor, E. Novak, D. Debu, J. B. Herzog. Investigation of maximum optical enhancement in single gold nanowires and triple nanowire arrays. J. Nanophoton., 9, 093053(2015).

    [79] A. S. Hall, M. Faryad, G. D. Barber, A. Lakhtakia, T. E. Mallouk. Effect of grating period on the excitation of multiple surface-plasmon-polariton waves guided by the interface of a metal grating and a photonic crystal. Proc. SPIE, 8620, 862003(2013).

    [80] C.-H. Lin, C. Hsieh, C.-G. Tu, Y. Kuo, H.-S. Chen, P.-Y. Shih, C.-H. Liao, Y.-W. Kiang, C. C. Yang, C.-H. Lai, G.-R. He, J.-H. Yeh, T.-C. Hsu. Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering. Opt. Express, 22, A842-A856(2014).

    [81] X. H. Xiong, L. M. Zhan, X. Ke. Effects of grating slant angle on surface plasmon resonance and its applications for sensors. Appl. Mech. Mater., 536–537, 342-345(2014).

    [82] F. Liu, X. Zhang. Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications. Biosens. Bioelectron., 68, 719-725(2015).

    [83] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science, 302, 419-422(2003).

    [84] P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman. Plasmon hybridization in nanoparticle dimers. Nano Lett., 4, 899-903(2004).

    [85] D. W. Brandl, C. Oubre, P. Nordlander. Plasmon hybridization in nanoshell dimers. J. Chem. Phys., 123, 024701(2005).

    [86] M. Sukharev, A. Nitzan. Plasmon transmission through excitonic subwavelength gaps(2016).

    [87] K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, P. Wang. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film. Nanotechnology, 27, 165401(2016).

    Ahmad A. Darweesh, Stephen J. Bauman, Joseph B. Herzog. Improved optical enhancement using double-width plasmonic gratings with nanogaps[J]. Photonics Research, 2016, 4(5): 0173
    Download Citation