• Advanced Photonics
  • Vol. 5, Issue 5, 056004 (2023)
Debarghya Sarkar1、2, Paul H. Dannenberg1、2、3, Nicola Martino1、2, Kwon-Hyeon Kim1、2, Yue Wu1、2, and Seok-Hyun Yun1、2、3、*
Author Affiliations
  • 1Harvard Medical School, Boston, Massachusetts, United States
  • 2Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
  • 3Massachusetts Institute of Technology, Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts, United States
  • show less
    DOI: 10.1117/1.AP.5.5.056004 Cite this Article Set citation alerts
    Debarghya Sarkar, Paul H. Dannenberg, Nicola Martino, Kwon-Hyeon Kim, Yue Wu, Seok-Hyun Yun. Precise photoelectrochemical tuning of semiconductor microdisk lasers[J]. Advanced Photonics, 2023, 5(5): 056004 Copy Citation Text show less
    References

    [1] A. W. Elshaari et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun., 8, 379(2017).

    [2] J. Zhang et al. On-chip scalable highly pure and indistinguishable single-photon sources in ordered arrays: path to quantum optical circuits. Sci. Adv., 8, eabn9252(2022).

    [3] E. A. Rank et al. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings. Light Sci. Appl., 10, 6(2021).

    [4] N. Toropov et al. Review of biosensing with whispering-gallery mode lasers. Light Sci. Appl., 10, 42(2021).

    [5] C. Gong et al. Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing. Lab Chip, 18, 2741-2748(2018).

    [6] P. O. Krutzik, G. P. Nolan. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods, 3, 361-368(2006).

    [7] R. N. Germain, E. A. Robey, M. D. Cahalan. A decade of imaging cellular motility and interaction dynamics in the immune system. Science, 336, 1676-1681(2012).

    [8] X. Gao et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 22, 969-976(2004).

    [9] M. Howarth et al. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA, 102, 7583-7588(2005).

    [10] X. Gao et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol., 16, 63-72(2005).

    [11] A. Kumari et al. Actomyosin-driven force patterning controls endocytosis at the immune synapse. Nat. Commun., 10, 2870(2019).

    [12] H. Crerar et al. Regulation of NGF signaling by an axonal untranslated mRNA. Neuron, 102, 553-563.e8(2019).

    [13] R. Mukai et al. Mouse model of ocular hypertension with retinal ganglion cell degeneration. PLoS ONE, 14, e0208713(2019).

    [14] C. A. Dawson et al. Intravital microscopy of dynamic single-cell behavior in mouse mammary tissue. Nat. Protoc., 16, 1907-1935(2021).

    [15] X. Yang et al. Phase-transition microcavity laser. Nano Lett., 23, 3048-3053(2023).

    [16] N. Martino et al. Wavelength-encoded laser particles for massively multiplexed cell tagging. Nat. Photonics, 13, 720-727(2019).

    [17] D. Sarkar et al. Ultrasmall InGa(As)P dielectric and plasmonic nanolasers. ACS Nano(2023).

    [18] A. H. Fikouras et al. Non-obstructive intracellular nanolasers. Nat. Commun., 9, 4817(2018).

    [19] M. Castellarnau et al. Stochastic particle barcoding for single‐cell tracking and multiparametric analysis. Small, 11, 489-498(2015).

    [20] P. H. Dannenberg et al. Multilayer fabrication of a rainbow of microdisk laser particles across a 500 nm bandwidth. ACS Photonics, 8, 1301-1306(2021).

    [21] P. H. Dannenberg et al. Facile layer-by-layer fabrication of semiconductor microdisk laser particles. APL Photonics, 8, 021301(2023).

    [22] S. J. J. Kwok et al. Laser Particle Barcoding for Multi-Pass High-Dimensional Flow Cytometry(2022).

    [23] I. Aharonovich et al. Controlled tuning of whispering gallery modes of GaN/InGaN microdisk cavities. Appl. Phys. Lett., 99, 111111(2011).

    [24] N. Niu et al. A full free spectral range tuning of pin doped gallium nitride microdisk cavity. Appl. Phys. Lett., 101, 161105(2012).

    [25] E. Gil-Santos et al. Scalable high-precision tuning of photonic resonators by resonant cavity-enhanced photoelectrochemical etching. Nat. Commun., 8, 14267(2017).

    [26] R. Khare, E. L. Hu. Dopant selective photoelectrochemical etching of GaAs homostructures. J. Electrochem. Soc., 138, 1516(1991).

    [27] R. Khare et al. Micromachining in III–V semiconductors using wet photoelectrochemical etching. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom., 11, 2497-2501(1993).

    [28] D. Rauh, G. Kreysa, K.-I. Ota, R. F. Savinell. Compound semiconductors, electrochemical decomposition. Encyclopedia of Applied Electrochemistry, 238-245(2014).

    [29] A. J. Nozik, R. Memming. Physical chemistry of semiconductor–liquid interfaces. J. Phys. Chem., 100, 13061-13078(1996).

    [30] R. Hoisty. Photoetching and plating of gallium arsenide. J. Electrochem. Soc., 108, 790(1961).

    [31] R. Osgood et al. Localized laser etching of compound semiconductors in aqueous solution. Appl. Phys. Lett., 40, 391-393(1982).

    [32] J. van de Ven, H. Nabben. Anisotropic photoetching of III–V semiconductors: I. Electrochemistry. J. Electrochem. Soc., 137, 1603(1990).

    [33] M. N. Ruberto et al. The laser‐controlled micrometer‐scale photoelectrochemical etching of III–V semiconductors. J. Electrochem. Soc., 138, 1174(1991).

    [34] M. A. R. Levinshtein, S. Rumyantsev, M. Shur. Handbook Series on Semiconductor Parameters(1996).

    [35] J. Reichman. The current‐voltage characteristics of semiconductor‐electrolyte junction photovoltaic cells. Appl. Phys. Lett., 36, 574-577(1980).

    [36] H. Reiss. Photocharacteristics for electrolyte‐semiconductor junctions. J. Electrochem. Soc., 125, 937(1978).

    [37] S.-J. Tang et al. Laser particles with omnidirectional emission for cell tracking. Light Sci. Appl., 10, 23(2021).

    [38] A. F. J. Levi. Applied Quantum Mechanics(2006).

    [39] P. A. Kohl, D. B. Harris, J. Winnick. The photoelectrochemical etching of (100) and (111) p‐InP. J. Electrochem. Soc., 138, 608(1991).

    [40] S. Trasatti. The absolute electrode potential: an explanatory note (recommendations 1986). Pure Appl. Chem., 58, 955-966(1986).

    [41] M. G. Walter et al. Solar water splitting cells. Chem. Rev., 110, 6446-6473(2010).

    Debarghya Sarkar, Paul H. Dannenberg, Nicola Martino, Kwon-Hyeon Kim, Yue Wu, Seok-Hyun Yun. Precise photoelectrochemical tuning of semiconductor microdisk lasers[J]. Advanced Photonics, 2023, 5(5): 056004
    Download Citation