• Laser & Optoelectronics Progress
  • Vol. 57, Issue 24, (2020)
Yuzhu Li1, Chuankang Li1, Xiang Hao1, Xu Liu1、3, and Cuifang Kuang1、2、3、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 2Ningbo Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
  • show less
    DOI: 10.3788/LOP57.240002 Cite this Article Set citation alerts
    Yuzhu Li, Chuankang Li, Xiang Hao, Xu Liu, Cuifang Kuang. Review and Prospect for Single Molecule Localization Microscopy[J]. Laser & Optoelectronics Progress, 2020, 57(24): Copy Citation Text show less
    References

    [1] Wang B K, Barbiero M, Zhang Q M et al. Super-resolution optical microscope: principle, instrumentation, and application[J]. Frontiers of Information Technology & Electronic Engineering, 20, 608-630(2019).

    [2] Sauer M, Heilemann M. Single-molecule localization microscopy in eukaryotes[J]. Chemical Reviews, 117, 7478-7509(2017).

    [3] Schermelleh L, Ferrand A, Huser T et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 21, 72-84(2019).

    [4] Mishin A S, Lukyanov K A. Live-cell super-resolution fluorescence microscopy[J]. Biochemistry (Moscow), 84, 19-31(2019).

    [5] Pan W H, Li W, Qu J H et al. Research progress on organic fluorescent probes for single molecule localization microscopy[J]. Chinese Journal of Applied Chemistry, 36, 269-281(2019).

    [6] Vangindertael J, Camacho R, Sempels W et al. An introduction to optical super-resolution microscopy for the adventurous biologist[J]. Methods and Applications in Fluorescence, 6, 022003(2018).

    [7] Biteen J, Willets K A. Introduction: super-resolution and single-molecule imaging[J]. Chemical Reviews, 117, 7241-7243(2017).

    [8] Fu Y, Wang T L, Zhao S. Imaging principles and applications of super-resolution optical microscopy[J]. Laser & Optoelectronics Progress, 56, 240002(2019).

    [9] Shashkova S. 37(4): BSR20170031[J]. Leake M C. Single-molecule fluorescence microscopy review: shedding new light on old problems. Bioscience Reports(2017).

    [10] Gordon M P, Ha T, Selvin P R. Single-molecule high-resolution imaging with photobleaching[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 6462-6465(2004).

    [11] Orrit M, Bernard J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal[J]. Physical Review Letters, 65, 2716(1990).

    [12] Moerner W E, Kador L. Optical detection and spectroscopy of single molecules in a solid[J]. Physical Review Letters, 62, 2535-2538(1989).

    [13] Brooks Shera E, Seitzinger N K, Davis L M et al. Detection of single fluorescent molecules[J]. Chemical Physics Letters, 174, 553-557(1990).

    [14] Betzig E. Proposed method for molecular optical imaging[J]. Optics Letters, 20, 237-239(1995).

    [15] Lidke K A, Rieger B, Jovin T M et al. Superresolution by localization of quantum dots using blinking statistics[J]. Optics Express, 13, 7052-7062(2005).

    [16] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [17] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [18] Sharonov A, Hochstrasser R M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 18911-18916(2006).

    [19] Heilemann M, van de Linde S, Schüttpelz M et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angewandte Chemie International Edition, 47, 6172-6176(2008).

    [20] Huang B, Wang W Q, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).

    [21] Shroff H, Galbraith C G, Galbraith J A et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 5, 417-423(2008).

    [22] Folling J, Bossi M L, Bock H et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return[J]. Nature Methods, 5, 943-945(2008).

    [23] Lalkens B, Testa I, Willig K I et al. MRT letter: nanoscopy of protein colocalization in living cells by STED and GSDIM[J]. Microscopy Research and Technique, 75, 1-6(2012).

    [24] Piestun R. Pavani S R P, Thompson M A, et al. Three-dimensional single-molecule fluorescence imaging beyond the diffraction limit using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 2995-2999(2009).

    [25] Dertinger T, Colyer R A, Iyer G et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 22287-22292(2009).

    [26] Holden S, Uphoff S, Kapanidis A N. DAOSTORM: an algorithm for high- density super-resolution microscopy[J]. Nature Methods, 8, 279-280(2011).

    [27] Hu C G, Zha R D, Ling Q Y et al. Super-resolution microscopy applications and development in living cell[J]. Infrared and Laser Engineering, 46, 15-25(2017).

    [28] Gustafsson N, Culley S, Ashdown G W et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations[J]. Nature Communications, 7, 12471(2016).

    [29] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [30] Ouyang W, Aristov A, Lelek M et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 36, 460-468(2018).

    [31] Nehme E, Weiss L E, Michaeli T et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 5, 458-464(2018).

    [32] Hell S W. MINFLUX Nanoscopy: Superresolution post Nobel[J]. European Biophysics Journal, 48, S34(2019).

    [33] Gu L S, Li Y Y, Zhang S W et al. Molecular resolution imaging by repetitive optical selective exposure[J]. Nature Methods, 16, 1114-1118(2019).

    [34] Cnossen J, Hinsdale T, Thorsen R Ø et al. Localization microscopy at doubled precision with patterned illumination[J]. Nature Methods, 17, 59-63(2020).

    [35] Chen T S. Research on photobleaching mechanism and real-time measurement techonology of fluorescent resonance energy transfer efficiency[D]. Wuhan: Huangzhong University of Science and Technology(2003).

    [36] Roubinet B, Weber M, Shojaei H et al. Fluorescent photoswitchable diarylethenes for biolabeling and single-molecule localization microscopies with optical superresolution[J]. Journal of the American Chemical Society, 139, 6611-6620(2017).

    [37] Wang L, Frei M S, Salim A et al. Small-molecule fluorescent probes for live-cell super-resolution microscopy[J]. Journal of the American Chemical Society, 141, 2770-2781(2019).

    [38] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).

    [39] Burnette D T, Sengupta P, Dai Y et al. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 21081-21086(2011).

    [40] Paës G, Habrant A, Terryn C. Fluorescent nano-probes to image plant cell walls by super-resolution STED microscopy[J]. Plants, 7, 11(2018).

    [41] Lin D Y, Qu J L. Recent progress on super-resolution imaging and correlative super-resolution microscopy[J]. Acta Physica Sinica, 66, 148703(2017).

    [42] Li H L, Vaughan J C. Switchable fluorophores for single-molecule localization microscopy[J]. Chemical Reviews, 118, 9412-9454(2018).

    [43] Wang Y L, Kanchanawong P[J]. Three-dimensional super resolution microscopy of F-actin filaments by interferometric photoactivated localization microscopy (iPALM) Journal of Visualized Experiments, 2016, e54774.

    [44] Bates M, Huang B, Zhuang X W. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes[J]. Current Opinion in Chemical Biology, 12, 505-514(2008).

    [45] Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 91, 4258-4272(2006).

    [46] Stallinga S, Rieger B. Accuracy of the Gaussian point spread function model in 2D localization microscopy[J]. Optics Express, 18, 24461-24476(2010).

    [47] Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy[J]. Nature Methods, 11, 267-279(2014).

    [48] Ober R J, Ram S, Ward E S. Localization accuracy in single-molecule microscopy[J]. Biophysical Journal, 86, 1185-1200(2004).

    [49] Willets K A, Wilson A J, Sundaresan V et al. Super-resolution imaging and plasmonics[J]. Chemical Reviews, 117, 7538-7582(2017).

    [50] Yang J Y, Pan L T, Hu F et al. Stochastic optical reconstruction microscopy and its application[J]. Infrared and Laser Engineering, 46, 1103008(2017).

    [51] Mark Bates W, Huang B, Dempsey G T et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 317, 1749-1753(2007).

    [52] Pereira P M, Almada P, Henriques R. High-content 3D multicolor super-resolution localization microscopy[J]. Methods in Cell Biology, 125, 95-117(2015).

    [53] von Diezmann A, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking[J]. Chemical Reviews, 117, 7244-7275(2017).

    [54] Sauer M. Localization microscopy coming of age: from concepts to biological impact[J]. Journal of Cell Science, 126, 3505-3513(2013).

    [55] Truong Quang B A, Lenne P F. Superresolution measurements in vivo: imaging Drosophila embryo by photoactivated localization microscopy[J]. Methods in Cell Biology, 125, 119-142(2015).

    [56] Szczurek A, Birk U J, Knecht H et al. Super-resolution binding activated localization microscopy through reversible change of DNA conformation[J]. Nucleus, 9, 182-189(2018).

    [57] Oddone A, Vilanova I V, Tam J et al. Super-resolution imaging with stochastic single-molecule localization: concepts, technical developments, and biological applications[J]. Microscopy Research and Technique, 77, 502-509(2014).

    [58] Auer A A, Strauss M T, Schlichthaerle T et al. Fast, background-free DNA-PAINT imaging using FRET-based probes[J]. Nano Letters, 17, 6428-6434(2017).

    [59] Schlichthaerle T, Strauss M T, Schueder F et al. Direct visualization of single nuclear pore complex proteins using genetically-encoded probes for DNA-PAINT[J]. Angewandte Chemie International Edition, 58, 13004-13008(2019).

    [60] Wade O K, Woehrstein J B, Nickels P C et al. 124-color super-resolution imaging by engineering DNA-PAINT blinking kinetics[J]. Nano Letters, 19, 2641-2646(2019).

    [61] Strauss S, Nickels P C, Strauss M T et al. Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging[J]. Nature Methods, 15, 685-688(2018).

    [62] Pereira A, Sousa M, Almeida A C et al. Coherent-hybrid STED: high contrast sub-diffraction imaging using a bi-vortex depletion beam[J]. Optics Express, 27, 8092-8111(2019).

    [63] Cai H Q, Kuang C F, Wang Y F. et al . Superresolution microscopy imaging based on wide-field stochastic fluorescent bleaching[J]. Chinese Journal of Lasers, 40, 1110001(2013).

    [64] Wang Y F, Kuang C F, Cai H Q et al. Sub-diffraction imaging with confocal fluorescence microscopy by stochastic photobleaching[J]. Optics Communications, 312, 62-67(2014).

    [65] Simonson P D, Rothenberg E, Selvin P R. Single-molecule-based super-resolution images in the presence of multiple fluorophores[J]. Nano Letters, 11, 5090-5096(2011).

    [66] Zeng Z P. Fluorescence fluctuation-based super-resolution nanoscopy[J]. Chinese Journal of Lasers, 45, 0307009(2018).

    [67] Eilers Y, Ta H S, Gwosch K C et al. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 6117-6122(2018).

    [68] Gwosch K C, Pape J K, Balzarotti F et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells[J]. Nature Methods, 17, 217-224(2020).

    [69] Taraska J W. A primer on resolving the nanoscale structure of the plasma membrane with light and electron microscopy[J]. The Journal of General Physiology, 151, 974-985(2019).

    [70] Mund M, Kaplan C, Ries J. Localization microscopy in yeast[J]. Methods in Cell Biology, 123, 253-271(2014).

    [71] Li H L, Vaughan J C. Switchable fluorophores for single-molecule localization microscopy[J]. Chemical Reviews, 118, 9412-9454(2018).

    [72] Gui D, Shang M T, Huang Z. Super-resolution localization microscopy with scientific complementary metal oxide semiconductor camera[J]. Chinese Journal of Lasers, 45, 0207016(2018).

    [73] Pittet M J, Garris C S, Arlauckas S P et al. 3(27): eaaq0491(2018).

    [74] Dersch S, Graumann P L. The ultimate picture: the combination of live cell superresolution microscopy and single molecule tracking yields highest spatio-temporal resolution[J]. Current Opinion in Microbiology, 43, 55-61(2018).

    [75] Wang X H, Li X J, Deng X et al. Single-molecule fluorescence imaging to quantify membrane protein dynamics and oligomerization in living plant cells[J]. Nature Protocols, 10, 2054-2063(2015).

    [76] Sengupta P, van Engelenburg S B, Lippincott-Schwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy[J]. Chemical Reviews, 114, 3189-3202(2014).

    Yuzhu Li, Chuankang Li, Xiang Hao, Xu Liu, Cuifang Kuang. Review and Prospect for Single Molecule Localization Microscopy[J]. Laser & Optoelectronics Progress, 2020, 57(24):
    Download Citation