• Photonics Research
  • Vol. 10, Issue 2, 365 (2022)
Changmin Ahn, Yongjin Na, Minji Hyun, Jinho Bae, and Jungwon Kim*
Author Affiliations
  • School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
  • show less
    DOI: 10.1364/PRJ.443316 Cite this Article Set citation alerts
    Changmin Ahn, Yongjin Na, Minji Hyun, Jinho Bae, Jungwon Kim. Synchronization of an optical frequency comb and a microwave oscillator with 53 zs/Hz1/2 resolution and 10-20-level stability[J]. Photonics Research, 2022, 10(2): 365 Copy Citation Text show less
    References

    [1] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [2] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, P. O. Schmidt. Optical atomic clocks. Rev. Mod. Phys., 87, 637-701(2015).

    [3] C. Clivati, R. Aiello, G. Bianco. Common-clock very long baseline interferometry using a coherent optical fiber link. Optica, 7, 1031-1037(2020).

    [4] C. Clivati, R. Ambrosini, T. Artz, A. Bertarini, C. Bortolotti, M. Frittelli, F. Levi, A. Mura, G. Maccaferri, M. Nanni, M. Negusini, F. Perini, M. Roma, M. Stagni, M. Zucco, D. Calonico. A VLBI experiment using a remote atomic clock via a coherent fibre link. Sci. Rep., 7, 40992(2017).

    [5] J. C. Scheytt, D. Wrana, M. Bahmanian, I. Kallfass. Ultra-low phase noise frequency synthesis for THz communications using optoelectronic PLLs. 3rd International Workshop on Mobile Terahertz Systems (IWMTS), 1-4(2020).

    [6] S. Zhang, J. Wu, J. Leng, S. Lai, J. Zhao. Highly precise stabilization of intracavity prism-based Er:fiber frequency comb using optical-microwave phase detector. Opt. Lett., 39, 6454-6457(2014).

    [7] P. Emma, R. Akre, J. Arthur, R. Bionta. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics, 4, 641-647(2010).

    [8] S. Schulz, I. Grguraš, C. Behrens, H. Bromberger, J. T. Costello, M. K. Czwalinna, M. Felber, M. C. Hoffmann, M. Ilchen, H. Y. Liu, T. Mazza, M. Meyer, S. Pfeiffer, P. Predki, S. Schefer, C. Schmidt, U. Wegner, H. Schlarb, A. L. Cavalieri. Femtosecond all-optical synchronization of an X-ray free-electron laser. Nat. Commun., 6, 5938(2015).

    [9] J. Shin, H. Kim, S. Park, H. Bark, K. Oang, K. Jang, K. Lee, F. Rotermund, Y. Jeong, J. Kim. Sub-10-fs timing for ultrafast electron diffraction with THz-driven streak camera. Laser Photon. Rev., 15, 2000326(2021).

    [10] S. P. Weathersby, G. Brown, M. Centurion, T. F. Chase, R. Coffee, J. Corbett, J. P. Eichner, J. C. Frisch, A. R. Fry, M. Gühr, N. Hartmann, C. Hast, R. Hettel, R. K. Jobe, E. N. Jongewaard, J. R. Lewandowski, R. K. Li, A. M. Lindenberg, I. Makasyuk, J. E. May, D. McCormick, M. N. Nguyen, A. H. Reid, X. Shen, K. Sokolowski-Tinten, T. Vecchione, S. L. Vetter, J. Wu, J. Yang, H. A. Dürr, X. J. Wang. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum., 86, 073702(2015).

    [11] R. P. Scott, C. Langrock, B. H. Kolner. High-dynamic-range laser amplitude and phase noise measurement techniques. IEEE J. Sel. Top. Quantum Electron., 7, 641-655(2001).

    [12] F. Kiewiet, A. Kemper, O. Luiten, G. Brussaard, M. J. van der wiel. Femtosecond synchronization of a 3 GHz RF oscillator to a mode-locked Ti:sapphire laser. Nucl. Instrum. Methods Phys. Res. Sect. A, 484, 619-624(2002).

    [13] Q. Du, Y. Du, L. Yan, W. Huang, J. Li, C. Tang. Precise control and measurement of Laser-RF synchronization for Thomson-scattering X-ray source. Nucl. Instrum. Methods Phys. Res. Sect. A, 637, S137-S140(2011).

    [14] K. Gumerlock, J. Frisch, B. Hill, J. May, D. Nelson, S. Smith. A low-cost, high-reliability femtosecond laser timing system for LCLS. 36th International Free Electron Laser Conference (FEL), 917-921(2014).

    [15] M. Titberidze, M. Felber, T. Lamb, R. Loch, C. Sydlo, H. Schlarb. Fs level laser-to-RF synchronization at REGAE. J. Phys. Conf. Ser., 874, 012085(2017).

    [16] J. Kim, M. H. Perrott, F. X. Kaertner. Femtosecond synchronization of RF-signals with optical pulse trains. Opt. Lett., 79, 768-770(2004).

    [17] K. Jung, J. Kim. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. Opt. Lett., 37, 2958-2960(2012).

    [18] M. Endo, T. D. Shoji, T. R. Schibli. High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators. Sci. Rep., 8, 4388(2018).

    [19] M. Y. Peng, A. Kalaydzhyan, F. X. Kärtner. Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization. Opt. Express, 22, 21702-21711(2014).

    [20] M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. T. Wang, O. D. Mücke, F. X. Kärtner. Attosecond precision multi-kilometer laser-microwave network. Light Sci. Appl., 6, e16187(2017).

    [21] A. Nejadmalayeri, F. Kärtner. Mach-Zehnder based balanced optical microwave phase detector. Conference on Lasers and Electro-Optics, CTu2A.1(2012).

    [22] C.-G. Jeon, Y. Na, B.-W. Lee, J. Kim. Simple-structured, subfemtosecond- resolution optical-microwave phase detector. Opt. Lett., 43, 3997-4000(2018).

    [23] M. Lessing, H. S. Margolis, C. T. A. Brown, P. Gill, G. Marra. Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors. Opt. Express, 21, 27057-27062(2013).

    [24] D. Hou, X. P. Xie, Y. L. Zhang, J. T. Wu, Z. Y. Chen, J. Y. Zhao. Highly stable wideband microwave extraction by synchronizing widely tunable optoelectronic oscillator with optical frequency comb. Sci. Rep., 3, 3509(2013).

    [25] M. Bahmanian, J. C. Scheytt. A 2–20-GHz ultralow phase noise signal source using a microwave oscillator locked to a mode-locked laser. IEEE Trans. Microw. Theory Tech., 69, 1635-1645(2021).

    [26] X. Chen, J. Zhang, J. Lu, X. Lu, X. Tian, B. Liu, H. Wu, T. Tang, K. Shi, Z. Zhang. Feed-forward digital phase compensation for long-distance precise frequency dissemination via fiber network. Opt. Lett., 40, 371-374(2015).

    [27] X. Chen, J. Lu, Y. Cui, J. Zhang, X. Lu, X. Tian, C. Ci, B. Liu, H. Wu, T. Tang, K. Shi, Z. Zhang. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link. Sci. Rep., 5, 18343(2015).

    [28] B. Ning, S. Zhang, D. Hou, J. Wu, Z. Li, J. Zhao. High-precision distribution of highly stable optical pulse trains with 8.8×10−19 instability. Sci. Rep., 4, 5109(2014).

    [29] Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, J. Kim. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photonics, 14, 355-360(2020).

    [30] H. Yang, B. Han, J. Shin, D. Hou, H. Chung, I. Baek, Y. Jeong, J. Kim. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources. Sci. Rep., 7, 39966(2017).

    [31] K. Jung, J. Lim, J. Shin, H. Yang, L. Chen, F. X. Kaertner, H. Kang, C. Min, J. Kim. Remote laser-microwave synchronization over kilometer-scale fiber link with few-femtosecond drift. J. Lightwave Technol., 32, 3742-3748(2014).

    [32] A. Haboucha, W. Zhang, T. Li, M. Lours, A. N. Luiten, Y. Le Coq, G. Santarelli. Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Opt. Lett., 36, 3654-3656(2011).

    [33] J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersale, G. Santarelli. Ultra-low noise microwave extraction from fiber-based optical frequency comb. Opt. Lett., 34, 3707-3709(2009).

    [34] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, A. D. Ludlow. An atomic clock with 10−18 instability. Science, 341, 1215-1218(2013).

    [35] T. Nakamura, J. Davila-Rodriguez, H. Leopardi, J. A. Sherman, T. M. Fortier, X. Xie, J. C. Campbell, W. F. McGrew, X. Zhang, Y. S. Hassan, D. Nicolodi, K. Beloy, A. D. Ludlow, S. A. Diddams, F. Quinlan. Coherent optical clock down-conversion for microwave frequencies with 10−18 instability. Science, 368, 889-892(2020).

    Changmin Ahn, Yongjin Na, Minji Hyun, Jinho Bae, Jungwon Kim. Synchronization of an optical frequency comb and a microwave oscillator with 53 zs/Hz1/2 resolution and 10-20-level stability[J]. Photonics Research, 2022, 10(2): 365
    Download Citation