• Photonics Research
  • Vol. 9, Issue 6, 937 (2021)
Kaiyu Cui1、2、†,*, Zhilei Huang1、†, Ning Wu1、2, Qiancheng Xu1、2, Fei Pan1、2, Jian Xiong1、2, Xue Feng1、2, Fang Liu1、2, Wei Zhang1、2、3, and Yidong Huang1、2、3
Author Affiliations
  • 1Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • 2Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
  • 3Beijing Academy of Quantum Information Science, Beijing, China
  • show less
    DOI: 10.1364/PRJ.403833 Cite this Article Set citation alerts
    Kaiyu Cui, Zhilei Huang, Ning Wu, Qiancheng Xu, Fei Pan, Jian Xiong, Xue Feng, Fang Liu, Wei Zhang, Yidong Huang. Phonon lasing in a hetero optomechanical crystal cavity[J]. Photonics Research, 2021, 9(6): 937 Copy Citation Text show less
    References

    [1] S. Olcum, N. Cermak, S. C. Wasserman, S. R. Manalis. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions. Nat. Commun., 6, 7070(2015).

    [2] F. Liu, S. Alaie, Z. C. Leseman, M. Hossein-Zadeh. Sub-pg mass sensing and measurement with an optomechanical oscillator. Opt. Express, 21, 19555-19567(2013).

    [3] W. Yu, W. C. Jiang, Q. Lin, T. Lu. Cavity optomechanical spring sensing of single molecules. Nat. Commun., 7, 12311(2016).

    [4] K. Jensen, K. Kim, A. Zettl. An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol., 3, 533(2008).

    [5] E. Gavartin, P. Verlot, T. J. Kippenberg. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol., 7, 509-514(2012).

    [6] M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, P. E. Barclay. Dissipative and dispersive optomechanics in a nanocavity torque sensor. Phys. Rev. X, 4, 021052(2014).

    [7] J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol., 4, 820-823(2009).

    [8] M. Wu, N. L. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, P. E. Barclay. Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nat. Nanotechnol., 12, 127-131(2017).

    [9] B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schafermeier, T. Gehring, W. P. Bowen, U. L. Andersen. Quantum enhanced optomechanical magnetometry. Optica, 5, 850-856(2018).

    [10] S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, H. Rubinsztein-Dunlop, S. Forstner. Cavity optomechanical magnetometer. Phys. Rev. Lett., 108, 120801(2012).

    [11] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter. A high-resolution microchip optomechanical accelerometer. Nat. Photonics, 6, 768-772(2012).

    [12] H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, T. J. Kippenberg. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett., 95, 033901(2005).

    [13] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature, 482, 63-67(2012).

    [14] Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, C. Dong. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [15] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, J. G. E. Harris. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 452, 72-75(2008).

    [16] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Optomechanical crystals. Nature, 462, 78-82(2009).

    [17] T. J. Kippenberg, F. Marquardt, M. Aspelmeyer. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [18] J. Chan, T. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, O. Painter. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89-92(2011).

    [19] E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, I. Favero. High-frequency nano-optomechanical disk resonators in liquids. Nat. Nanotechnol., 10, 810-816(2015).

    [20] K. L. Ekinci, Y. T. Yang, M. L. Roukes. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys., 95, 2682-2689(2004).

    [21] A. N. Cleland, M. L. Roukes. Noise processes in nanomechanical resonators. J. Appl. Phys., 92, 2758-2769(2002).

    [22] G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, T. J. Kippenberg. Measuring nanomechanical motion with an imprecision below the standard quantum limit. Phys. Rev. A, 82, 820-823(2010).

    [23] G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, T. J. Kippenberg. Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys., 5, 909-914(2009).

    [24] K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, V. Aksyuk. Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator. Nano Lett., 11, 791-797(2011).

    [25] T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, S. Noda. Photonic crystal nanocavity with a Q factor exceeding eleven million. Opt. Express, 25, 1769-1777(2017).

    [26] J. L. Arlett, E. B. Myers, M. L. Roukes. Comparative advantages of mechanical biosensors. Nat. Nanotechnol., 6, 203-215(2011).

    [27] K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. Hänsch, T. Udem. A phonon laser. Nat. Phys., 5, 682-686(2009).

    [28] F. Pan, K. Cui, G. Bai, X. Feng, F. Liu, W. Zhang, Y. Huang. Radiation-pressure-antidamping enhanced optomechanical spring sensing. ACS Photon., 5, 4164-4169(2018).

    [29] Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, Y. Huang. Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals. Sci. Rep., 5, 15964(2015).

    [30] J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, O. Painter. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett., 101, 081115(2012).

    [31] K. C. Balram, M. I. Davanco, J. D. Song, K. Srinivasan. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics, 10, 346-352(2016).

    [32] K. Han, J. Kim, G. Bahl. High-throughput sensing of freely flowing particles with optomechanofluidics. Optica, 3, 585-591(2016).

    [33] S. Olcum, N. Cermak, S. C. Wasserman, K. Christine, S. H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, S. R. Manalisa. Weighing nanoparticles in solution at the attogram scale. Proc. Natl. Acad. Sci. USA, 111, 1310-1315(2014).

    [34] Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, G. Guo. Observation of high-Q optomechanical modes in the mounted silica microspheres. Photon. Res., 3, 243-247(2015).

    [35] G. Qin, M. Wang, J. Wen, R. Dong, G. Long. Brillouin cavity optomechanics sensing with enhanced dynamical backaction. Photon. Res., 7, 1440-1446(2019).

    [36] B. Li, G. Brawley, H. Greenall, S. Forstner, W. P. Bowen. Ultrabroadband and sensitive cavity optomechanical magnetometry. Photon. Res., 8, 1064-1071(2020).

    [37] Y. Li, K. Cui, X. Feng, Z. Huang, F. Liu, W. Zhang, Y. Huang. Optomechanical crystal nanobeam cavity with high optomechanical coupling rate. J. Opt., 17, 045001(2015).

    [38] Z. Huang, K. Cui, G. Bai, X. Feng, F. Liu, W. Zhang, Y. Huang. High-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide. Sci. Rep., 6, 34160(2016).

    [39] A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Groeblacher, O. Painter. Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Phys. Rev. Lett., 112, 153603(2014).

    [40] A. H. Safavi-Naeini, O. Painter. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Opt. Express, 18, 14926-14943(2010).

    CLP Journals

    [1] Qiancheng Xu, Kaiyu Cui, Ning Wu, Xue Feng, Fang Liu, Wei Zhang, Yidong Huang. Tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities[J]. Photonics Research, 2022, 10(8): 1819

    Kaiyu Cui, Zhilei Huang, Ning Wu, Qiancheng Xu, Fei Pan, Jian Xiong, Xue Feng, Fang Liu, Wei Zhang, Yidong Huang. Phonon lasing in a hetero optomechanical crystal cavity[J]. Photonics Research, 2021, 9(6): 937
    Download Citation