• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 2, 1350045 (2014)
He N. Xu1、2、*, Rong Zhou1, Lily Moon1、2, Min Feng1、2, and Lin Z. Li1、2、3
Author Affiliations
  • 1Department of Radiology University of Pennsylvania Philadelphia, PA 19104, USA
  • 2Britton Chance Laboratory of Redox Imaging Johnson Research Foundation Department of Biochemistry and Biophysics University of Pennsylvania Philadelphia, PA 19104, USA
  • 3Institute of Translational Medicine and Therapeutics Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104, USA
  • show less
    DOI: 10.1142/s1793545813500454 Cite this Article
    He N. Xu, Rong Zhou, Lily Moon, Min Feng, Lin Z. Li. 3D imaging of the mitochondrial redox state of rat hearts under normal and fasting conditions[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350045 Copy Citation Text show less
    References

    [1] H. G. Zimmer, "Some aspects of cardiac heterogeneity," Basic Res. Cardiol. 89, 101–117 (1994).

    [2] A. R. Pries, T. W. Secomb, "Origins of heterogeneity in tissue perfusion and metabolism," Cardiovasc. Res. 81, 328–335 (2009).

    [3] R. S. Balaban, A. Arai, "Function, metabolic, and flow heterogeneity of the heart: The view is getting better," Circ. Res. 88, 265–267 (2001).

    [4] A. Deussen, T. Lauer, R. Loncar, J. Kropp, "Heterogeneity of metabolic parameters in the left ventricular myocardium and its relation to local blood flow," Basic Res. Cardiol. 96, 564–574 (2001).

    [5] U. K. Decking, J. Schrader, "Spatial heterogeneity of myocardial perfusion and metabolism," Basic Res. Cardiol. 93, 439–445 (1998).

    [6] E. D. Lewandowski, "Metabolic heterogeneity of carbon substrate utilization in mammalian heart: NMR determinations of mitochondrial versus cytosolic compartmentation," Biochemistry 31, 8916– 8923 (1992).

    [7] A. Mayevsky, "Shedding light on life: Optical assessment of mitochondrial function and tissue vitality in biology and medicine," J. Innov. Opt. Health Sci. 1, 71–83 (2008).

    [8] A. Mayevsky, B. Chance, "Oxidation-reduction states of NADH in vivo: From animals to clinical use," Mitochondrion 7, 330–339 (2007).

    [9] A. Mayevsky, G. G. Rogatsky, "Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies," Am. J. Physiol. Cell Physiol. 292, C615–C640 (2007).

    [10] C. Ince, J. F. Ashruf, J. A. Avontuur, P. A. Wieringa, J. A. Spaan, H. A. Bruining, "Heterogeneity of the hypoxic state in rat heart is determined at capillary level," Am. J. Physiol. Heart Circ. Physiol. 264, H294–H301 (1993).

    [11] C. Steenbergen, G. Deleeuw, C. Barlow, B. Chance, J. R. Williamson, "Heterogeneity of the hypoxic state in perfused rat heart," Circ. Res. 41, 606–615 (1977).

    [12] C. Steenbergen, J. R. Williamson, "Heterogeneous coronary perfusion during myocardial hypoxia," Adv. Myocardiol. 2, 271–284 (1980).

    [13] C. Steenbergen, G. Deleeuw, J. R. Williamson, "Analysis of control of glycolysis in ischemic hearts having heterogeneous zones of anoxia," J. Mol. Cell Cardiol. 10, 617–639 (1978).

    [14] J. R. Williamson, K. N. Davis, G. Medina-Ramirez, "Quantitative analysis of heterogenous NADH fluorescence in perfused rat hearts during hypoxia and ischemia," J. Mol. Cell Cardiol. 14, 29–35 (1982).

    [15] J. F. Ashruf, C. Ince, H. A. Bruining, "Regional ischemia in hypertrophic Langendorff-perfused rat hearts," Am. J. Physiol. 277, H1532–H1539 (1999).

    [16] A. H. Harken, C. H. Barlow, W. R. Harden, 3rd, B. Chance, "Two and three dimensional display of myocardial ischemic "border zone" in dogs," Am. J. Cardiol. 42, 954–959 (1978).

    [17] C. H. Barlow, B. Chance, "Ischemic areas in perfused rat hearts: Measurement by NADH fluorescence photography," Science 193, 909–910 (1976).

    [18] C. H. Barlow, W. R. Harden, 3rd, A. H. Harken, M. B. Simson, J. C. Haselgrove, B. Chance, M. O'Connor, G. Austin, "Fluorescence mapping of mitochondrial redox changes in heart and brain," Crit. Care Med. 7, 402–406 (1979).

    [19] B. Chance, C. Barlow, J. Haselgrove, Y. Nakase, B. Quistorff, F. Matschinsky, A. Mayevsky, "Microheterogeneities of redox states of perfused and intact organs," in Microenvironments and Metabolic Compertmentation, P. A. Srere, R. W. Estabrook, Eds., pp. 131–148, Academic Press (1978).

    [20] R. J. Bing, "Cardiac metabolism," Physiol. Rev. 45, 171–213 (1965).

    [21] W. C. Stanley, "Changes in cardiac metabolism: A critical step from stable angina to ischaemic cardiomyopathy," Eur. Heart J. Suppl. 3, O2–O7 (2001).

    [22] G. D. Lopaschuk, J. R. Ussher, C. D. L. Folmes, J. S. Jaswal, W. C. Stanley, "Myocardial fatty acid metabolism in health and disease," Physiol. Rev. 90, 207–258 (2010).

    [23] G. D. Lopaschuk, D. D. Belke, J. Gamble, T. Itoi, B. O. Schonekess, "Regulation of fatty acid oxidation in the mammalian heart in health and disease," Biochim. Biophys. Acta 1213, 263–276 (1994).

    [24] J. R. Neely, H. E. Morgan, "Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle," Ann. Rev. Physiol. 36, 413–459 (1974).

    [25] L. Mouchiroud, R. H. Houtkooper, J. Auwerx, "NADt metabolism: A therapeutic target for agerelated metabolic disease," Crit. Rev. Biochem. Mol. Biol. 48, 397–408 (2013).

    [26] S. J. Lin, E. Ford, M. Haigis, G. Liszt, L. Guarente, "Calorie restriction extends yeast life span by lowering the level of NADH," Genes Dev. 18, 12–16 (2004).

    [27] D. Chen, J. Bruno, E. Easlon, S. J. Lin, H. L. Cheng, F. W. Alt, L. Guarente, "Tissue-specific regulation of SIRT1 by calorie restriction," Genes Dev. 22, 1753–1757 (2008).

    [28] M. P. Mattson, R. Wan, "Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems," J. Nutr. Biochem. 16, 129–137 (2005).

    [29] S. Schaefer, R. Ramasamy, "Glycogen utilization and ischemic injury in the isolated rat heart," Cardiovasc. Res. 35, 90–98 (1997).

    [30] T. Doenst, P. H. Guthrie, J. M. Chemnitius, R. Zech, H. Taegtmeyer, "Fasting, lactate, and insulin improve ischemia tolerance in rat heart: A comparison with ischemic preconditioning," Am. J. Physiol. 270, H1607–H1615 (1996).

    [31] G. W. Goodwin, H. Taegtmeyer, "Metabolic recovery of isolated working rat heart after brief global ischemia," Am. J. Physiol. 267, H462–H470 (1994).

    [32] C. A. Schneider, H. Taegtmeyer, "Fasting in vivo delays myocardial cell damage after brief periods of ischemia in the isolated working rat heart," Circ. Res. 68, 1045–1050 (1991).

    [33] L. F. Wang, R. Ramasamy, S. Schaefer, "Regulation of glycogen utilization in ischemic hearts after 24 hours of fasting," Cardiovasc. Res. 42, 644–650 (1999).

    [34] B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, "Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals," J. Biol. Chem. 254, 4764–4771 (1979).

    [35] Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, B. Chance, "High-resolution three-dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue," Rev. Sci. Instrum. 73, 172–178 (2002).

    [36] B. Quistorff, J. C. Haselgrove, B. Chance, "High spatial resolution readout of 3-D metabolic organ structure: An automated, low-temperature redox ratio-scanning instrument," Anal. Biochem. 148, 389–400 (1985).

    [37] L. Z. Li, H. N. Xu, M. Ranji, S. Nioka, B. Chance, "Mitochondrial redox imaging for cancer diagnostic and therapeutic studies," J. Innov. Opt. Health Sci. 2, 325–341 (2009).

    [38] H. N. Xu, S. Nioka, B. Chance, L. Z. Li, "Imaging heterogeneity in the mitochondrial redox state of premalignant pancreas in the pancreas-specific PTEN-null transgenic mouse model," Biomark. Res. 1, 6 (2013).

    [39] K. Ozawa, B. Chance, A. Tanaka, S. Iwata, T. Kitai, I. Ikai, "Linear correlation between acetoacetate/ beta-hydroxybutyrate in arterial blood and oxidized flavoprotein/reduced pyridine nucleotide in freeze-trapped human liver tissue," Biochim. Biophys. Acta. 1138, 350–352 (1992).

    [40] K. Sato, Y. Kashiwaya, C. A. Keon, N. Tsuchiya, M. T. King, G. K. Radda, B. Chance, K. Clarke, R. L. Veech, "Insulin, ketone bodies, and mitochondrial energy transduction," FASEB J. 9, 651– 658 (1995).

    [41] H. N. Xu, S. Nioka, J. D. Glickson, B. Chance, L. Z. Li, "Quantitative mitochondrial redox imaging of breast cancer metastatic potential," J. Biomed. Opt. 15, 036010 (2010).

    [42] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, "Quantitative redox scanning of tissue samples using a calibration procedure," J. Innov. Opt. Health Sci. 2, 375–385 (2009).

    [43] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li. Calibration of redox scanning for tissue samples, Proc. SPIE Optical Tomography and Spectroscopy of Tissue VIII 7174, p. 71742F1-8 (2009).

    [44] E. M. Nuutinen, "Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart," Basic Res. Cardiol. 79, 49–58 (1984).

    [45] L. A. Katz, A. P. Koretsky, R. S. Balaban, "Respiratory control in the glucose perfused heart. A 31P NMR and NADH fluorescence study," FEBS Lett. 221, 270–276 (1987).

    [46] R. W. Estabrook, "Fluorometric measurement of reduced pyridine nucleotide in cellular and subcellular particles," Anal. Biochem. 4, 231–245 (1962).

    [47] M. Klingenberg, W. Slenczka, E. Ritt, "Comparative biochemistry of the pyridine nucleotide system in the mitochondria of various organs," Biochem. Z 332, 47–66 (1959).

    [48] J. Eng, R. M. Lynch, R. S. Balaban, "Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes," Biophys. J 55, 621–630 (1989).

    [49] K. Blinova, R. L. Levine, E. S. Boja, G. L. Griffiths, Z. D. Shi, B. Ruddy, R. S. Balaban, "Mitochondrial NADH fluorescence is enhanced by Complex I binding," Biochemistry 47, 9636–9645 (2008).

    [50] I. Hassinen, B. Chance, "Oxidation-reduction properties of the mitochondrial flavoprotein chain," Biochem. Biophys. Res. Commun. 31, 895–900 (1968).

    [51] W. S. Kunz, W. Kunz, "Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria," Biochim. Biophys. Acta 841, 237–246 (1985).

    [52] L. Z. Li, "Imaging mitochondrial redox potential and its possible link to tumor metastatic potential," J. Bioenerg. Biomembr. 44, 645–653 (2012).

    [53] B. Ware, M. Bevier, Y. Nishijima, S. Rogers, C. A. Carnes, V. A. Lacombe, "Chronic heart failure selectively induces regional heterogeneity of insulinresponsive glucose transporters," Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1300–R1306 (2011).

    [54] A. L. Lehninger, D. L. Nelson, M. M. Cox, Principles of Biochemistry, Worth Publishers, New York (1993).

    [55] G. J. van der Vusse, J. F. Glatz, H. C. Stam, R. S. Reneman, "Fatty acid homeostasis in the normoxic and ischemic heart," Physiol. Rev. 72, 881–940 (1992).

    [56] J. F. Oram, S. L. Bennetch, J. R. Neely, "Regulation of fatty acid utilization in isolated perfused rat hearts," J. Biol. Chem. 248, 5299–5309 (1973).

    [57] W. S. Kunz, "Application of the theory of steadystate flux control to mitochondrial beta-oxidation," Biomed. Biochim. Acta 50, 1143–1157 (1991).

    [58] S. Eaton, "Control of mitochondrial beta-oxidation flux," Prog. Lipid Res. 41, 197–239 (2002).

    [59] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li. Calibration of CCD-based redox imaging for biological tissues, Proc. SPIE Medical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging 7262, p. 72622F1-7 (2009).

    [60] R. Sepehr, K. Staniszewski, S. Maleki, E. R. Jacobs, S. Audi, M. Ranji, "Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress," J. Biomed. Opt. 17, 046010 (2012).

    He N. Xu, Rong Zhou, Lily Moon, Min Feng, Lin Z. Li. 3D imaging of the mitochondrial redox state of rat hearts under normal and fasting conditions[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350045
    Download Citation