• Laser & Optoelectronics Progress
  • Vol. 59, Issue 3, 0316002 (2022)
Weiling Li and Yan Zhang*
Author Affiliations
  • Beijing Key Laboratory of Metamaterials and Devices, Department of Physics, Capital Normal University, Beijing 100048, China
  • show less
    DOI: 10.3788/LOP202259.0316002 Cite this Article Set citation alerts
    Weiling Li, Yan Zhang. Dual-Frequency Angle-Independent High-Transmittance Metasurface[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0316002 Copy Citation Text show less
    References

    [1] Krasnok A E, Miroshnichenko A E, Belov P A et al. Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles[J]. JETP Letters, 94, 593-598(2011).

    [2] Yeh C, Casey K F. Reflection and transmission of electromagnetic waves by a moving dielectric slab[J]. Physical Review, 144, 665-669(1966).

    [3] Maystre D, Petit R. Brewster incidence for metallic gratings[J]. Optics Communications, 17, 196-200(1976).

    [4] Shen Y, Ye D, Celanovic I et al. Optical broadband angular selectivity[J]. Science, 343, 1499-1501(2014).

    [5] Watanabe R, Iwanaga M, Ishihara T. S-polarization Brewster’s angle of stratified metal-dielectric metamaterial in optical regime[J]. Physica Status Solidi (b), 245, 2696-2701(2008).

    [6] Bassiri S, Papas C H, Engheta N. Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab[J]. Journal of the Optical Society of America A, 5, 1450-1459(1988).

    [7] Lin X, Shen Y C, Kaminer I et al. Transverse-electric Brewster effect enabled by nonmagnetic two-dimensional materials[J]. Physical Review A, 94, 023836(2016).

    [8] Yu N, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [9] Ba Z L, Wang X. High-efficiency wideband millimeter wave metasurface structure with gradient phase[J]. Laser & Optoelectronics Progress, 56, 181601(2019).

    [10] Zhang C, Yu S X, Long F et al. Ultrathin high-efficiency reflective linear polarization conversion surface using double-E structure for Ku-band[J]. Laser & Optoelectronics Progress, 56, 092401(2019).

    [11] Liu K T, Liu X, Ge Y H et al. Generation of orbital angular momentum vortex beams based on high-efficiency transmission metasurfaces[J]. Acta Optica Sinica, 39, 0126016(2019).

    [12] Jin J J, Luo J, Zhang X H et al. Generation and detection of orbital angular momentum via metasurface[J]. Scientific Reports, 6, 24286(2016).

    [13] Gao L H, Cheng Q, Yang J et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Applications, 4, e324(2015).

    [14] Zhang Y, Xie B Y, Liu W W et al. Anomalous reflection and vortex beam generation by multi-bit coding acoustic metasurfaces[J]. Applied Physics Letters, 114, 091905(2019).

    [15] Zhu B O, Feng Y J. Passive metasurface for reflectionless and arbitrary control of electromagnetic wave transmission[J]. IEEE Transactions on Antennas and Propagation, 63, 5500-5511(2015).

    [16] Kwon D H, Ptitcyn G, Díaz-Rubio A et al. Transmission magnitude and phase control for polarization-preserving reflectionless metasurfaces[J]. Physical Review Applied, 9, 034005(2018).

    [17] Epstein A, Eleftheriades G V. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection[J]. Physical Review Letters, 117, 256103(2016).

    [18] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [19] Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 76, 4773-4776(1996).

    [20] Dani K M, Ku Z Y, Upadhya P C et al. Subpicosecond optical switching with a negative index metamaterial[J]. Nano Letters, 9, 3565-3569(2009).

    [21] Koschny T, Markos P, Smith D R et al. Resonant and antiresonant frequency dependence of the effective parameters of metamaterials[J]. Physical Review E, 68, 065602(2003).

    [22] Chen H S, Huang L, Cheng X X et al. Magnetic properties of metamaterial composed of closed rings[J]. Progress in Electromagnetics Research, 115, 317-326(2011).

    [23] Hu X H, Chan C T, Zi J et al. Diamagnetic response of metallic photonic crystals at infrared and visible frequencies[J]. Physical Review Letters, 96, 223901(2006).

    [24] Ye D X, Lu L, Joannopoulos J D et al. Invisible metallic mesh[J]. Proceedings of the National Academy of Sciences of USA, 113, 2568-2572(2016).

    [25] Nicolson A M, Ross G F. Measurement of the intrinsic properties of materials by time-domain techniques[J]. IEEE Transactions on Instrumentation and Measurement, 19, 377-382(1970).

    [26] Smith D R, Schultz S, Markoš P et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 65, 195104(2002).

    [27] Iwanaga M. Effective optical constants in stratified metal-dielectric metameterial[J]. Optics Letters, 32, 1314-1316(2007).

    [28] Minowa Y, Fujii T, Nagai M et al. Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy[J]. Optics Express, 16, 4785-4796(2008).

    Weiling Li, Yan Zhang. Dual-Frequency Angle-Independent High-Transmittance Metasurface[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0316002
    Download Citation