• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 120009 (2018)
Xiaoling Chen, Juan Hu, Zhiqun Zhang, Li Ma, Hua Chen, and Qing Fang*
Author Affiliations
  • College of Science, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • show less
    DOI: 10.3788/LOP55.120009 Cite this Article Set citation alerts
    Xiaoling Chen, Juan Hu, Zhiqun Zhang, Li Ma, Hua Chen, Qing Fang. Research Progress in Silicon Photonic Arrayed Waveguide Grating Devices[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120009 Copy Citation Text show less
    References

    [1] Yu J Z[M]. Silicon photonics, 2, 282-312.

    [2] Smit M K. New focusing and dispersive planar component based on an optical phased array[J]. Electronics Letters, 24, 385-386(1988). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5685

    [3] Takahashi H, Suzuki S, Kato K et al. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution[J]. Electronics Letters, 26, 87-88(1990). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=82474

    [4] Dragone C. An N×N optical multiplexer using a planar arrangement of two star couplers[J]. IEEE Photonics Technology Letters, 3, 812-815(1991). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=84502

    [5] Ismail N, Sun F, Sengo G et al. Improved arrayed-waveguide-grating layout avoiding systematic phase errors[J]. Optic Express, 19, 8781-8794(2011). http://www.ncbi.nlm.nih.gov/pubmed/21643130

    [6] Yuan R. Arrayed waveguide grating component and its applications[J]. Optical Communication Technology, 34, 1-5(2010).

    [7] Adar R, Serbin M R, Mizrahi V. Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator[J]. Journal of Lightwave Technology, 12, 1369-1372(1994). http://ieeexplore.ieee.org/iel1/50/7652/00317523.pdf

    [8] Sugita A, Kaneko A, Okamoto K et al. Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides[J]. IEEE Photonics Technology Letters, 12, 1180-1182(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=874228

    [9] Diemeer M B J, Spiekman L H, Ramsamoedj R et al. . Polymeric phased array wavelength multiplexer operating around 1550 nm[J]. Electronics Letters, 32, 1132-1133(1996). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=502899

    [10] Barbarin Y. Leijtens X J M, Bente E A J M, et al. Extremely small AWG demultiplexer fabricated on InP by using a double-etch process[J]. IEEE Photonics Technology Letters, 16, 2478-2480(2004).

    [11] Zhao J Y, Chen X, Qian K et al. Design and fabrication of 16 channel 200 GHz InP based array waveguide gratings[J]. Acta Optica Sinica, 33, 0605002(2013).

    [12] Bogaerts W, Selvaraja S K, Dumon P et al. Silicon-on-insulator spectral filters fabricated with CMOS technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 33-34(2010). http://ieeexplore.ieee.org/document/5406283

    [13] Ohyama T, Doi Y, Kobayashi W et al. Compact hybrid integrated 100-Gb/s transmitter optical sub-assembly using optical butt-coupling between EADFB lasers and silica-based AWG multiplexer[J]. Journal of Lightwave Technology, 34, 1038-1046(2016). http://ieeexplore.ieee.org/document/7355290/

    [14] Zhang Z Q, Hu J, Chen H et al. Low-crosstalk silicon photonics arrayed waveguide grating[J]. Chinese Optics Letters, 15, 041301(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170222000035kRnTqW

    [15] Castellan C, Tondini S, Mancinelli M et al. Reflectance reduction in a whiskered SOI star coupler[J]. IEEE Photonics Technology Letters, 28, 1870-1873(2016). http://ieeexplore.ieee.org/document/7484281/

    [16] Tondini S, Castellan C, Mancinelli M et al. Methods for low crosstalk and wavelength tunability in arrayed-waveguide grating for on-silicon optical network[J]. Journal of Lightwave Technology, 35, 5134-5141(2017). http://ieeexplore.ieee.org/document/8093988/

    [17] Dumon P. Bogaerts W, van Thourhout D, et al. Wavelength-selective components in SOI photonic wires fabricated with deep UV lithography. [C]∥First IEEE International Conference on Group IV Photonics, IEEE, 28-30(2004).

    [18] Li J, Kim T R, Kim H S et al. Lossy waveguide design considering polarization dependency to reduce back reflection in 2×1 MMI combiners[J]. Optics Express, 22, 25953-25964(2014). http://www.ncbi.nlm.nih.gov/pubmed/25401629

    [19] Ye T, Fu Y F, Qiao L et al. Low-crosstalk Si arrayed waveguide grating with parabolic tapers[J]. Optics Express, 22, 31899-31906(2014). http://www.opticsinfobase.org/abstract.cfm?URI=oe-22-26-31899

    [20] Stanton E J, Volet N, Bowers J E. Low-loss arrayed waveguide grating at 2.0 μm. [C]∥Conference on Lasers and Electro-Optics, OSA, STh1M, 7(2017).

    [21] Dai D X, Shi Y C, He S L. Theoretical investigation for reducing polarization sensitivity in Si-nanowire-based arrayed-waveguide grating (de)multiplexer with polarization-beam-splitters and reflectors[J]. IEEE Journal of Quantum Electronics, 45, 654-660(2009). http://ieeexplore.ieee.org/document/4914934/

    [22] Dai D X, Fu X, Shi Y C et al. Experimental demonstration of an ultra-compact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors[J]. Optics Letters, 35, 2594-2596(2010). http://www.ncbi.nlm.nih.gov/pubmed/20680069

    [23] Okamoto K, Ishida K. Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors[J]. Optics Letters, 38, 3530-3533(2013). http://www.opticsinfobase.org/abstract.cfm?URI=ol-38-18-3530

    [24] Zou J, Lang T T, Le Z C et al. Ultracompact silicon-on-insulator-based reflective arrayed waveguide gratings for spectroscopic applications[J]. Applied Optics, 55, 3531-3536(2016). http://www.ncbi.nlm.nih.gov/pubmed/27140366

    [25] Kamei S, Kaneko A, Ishii M et al. Crosstalk reduction in arrayed-waveguide grating multiplexer/demultiplexer using cascade connection[J]. Journal of Lightwave Technology, 23, 1929-1938(2005). http://ieeexplore.ieee.org/document/1430792/

    [26] Pathak S, Vanslembrouck M, Dumon P et al. Optimized silicon AWG with flattened spectral response using an MMI aperture[J]. Journal of Lightwave Technology, 31, 87-93(2013). http://www.opticsinfobase.org/abstract.cfm?URI=jlt-31-1-87

    [27] Bauters J F. Heck M J R, Demis J, et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides[J]. Optics Express, 19, 3163-3174(2011).

    [28] Doerr C R, Chen L, Chen Y K et al. Wide bandwidth silicon nitride grating coupler[J]. IEEE Photonics Technology Letters, 22, 1461-1463(2010). http://ieeexplore.ieee.org/document/5535118

    [29] Dai D X, Wang Z, Bauters J F et al. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides[J]. Optics Express, 19, 14130-14136(2011). http://europepmc.org/abstract/MED/21934775

    [30] Chen L, Doerr C R, Dong P et al. Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing[J]. Optics Express, 19, B946-B951(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6065924

    [31] Doerr C R, Chen L, Buhl L L et al. Eight-channel SiO2/Si3N4/Si/Ge CWDM receiver[J]. IEEE Photonics Technology Letters, 23, 1201-1203(2011). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5778947

    [32] Shang K, Pathak S, Qin C et al. Low-loss compact silicon nitride arrayed waveguide gratings for photonic integrated circuits[J]. IEEE Photonics Journal, 9, 6601805(2017). http://ieeexplore.ieee.org/document/8030983/

    [33] Itoh M, Kamei S, Ishii M et al. Ultra-small 40-channel athermal arrayed-waveguide grating module with low-loss groove design[J]. Electronics Letters, 44, 1271-1272(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4648990

    [34] Wang L, Bogaerts W, Dumon P et al. Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides[J]. Applied Optics, 51, 1251-1256(2012). http://www.ncbi.nlm.nih.gov/pubmed/22441469

    [35] Bogaerts W, Taillaert D, Dumon P et al. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires[J]. Optics Express, 15, 1567-1578(2007). http://www.ncbi.nlm.nih.gov/pubmed/19532389

    [36] Pathak S, Vanslembrouck M, Dumon P et al. Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs[J]. Optics Express, 20, B493-B500(2012). http://www.opticsinfobase.org/abstract.cfm?uri=oe-20-26-B493

    [37] Fu X, Mao J B, Xu J et al. Study of eliminating residual polarization sensitivity of array waveguide grating with an embedded half-wave plate[J]. Acta Optica Sinica, 35, 1113001(2015).

    [38] Yamada H, Nozawa M, Kinoshita M et al. Vertical-coupling optical interface for on-chip optical interconnection[J]. Optics Express, 19, 698-703(2011). http://www.opticsinfobase.org/abstract.cfm?uri=oe-19-2-698

    [39] Fang Q, Liow T Y, Song J et al. Suspended optical fiber-to-waveguide mode size converter for silicon photonics[J]. Optics Express, 18, 7763-7769(2010). http://europepmc.org/abstract/med/20588617

    [40] Fang Q, Song J F, Luo X S et al. Mode-size converter with high coupling efficiency and broad bandwidth[J]. Optics Express, 19, 21588-21594(2011). http://europepmc.org/abstract/med/22109007

    [41] Fang Q, Song J F, Luo X S et al. Low loss fiber-to-waveguide converter with a 3-D functional taper for silicon photonics[J]. IEEE Photonics Technology Letters, 28, 2533-2536(2016). http://ieeexplore.ieee.org/document/7551171/

    [42] Qiu Y W. Silicon photonics[J]. Laser & Optoelectronics Progress, 43, 36-41(2006).

    [43] Zhou P J, Li Z Y, Yu Y D et al. Research progress of silicon-based photonic integration[J]. Acta Physica Sinica, 63, 104218(2014).

    [44] An J M, Zhang J S, Wang Y et al. Study on wavelength division multiplexer for silicon photonics[J]. Laser & Optoelectronics Progress, 51, 110006(2014).

    [45] Chen L, Doerr C R, Buhl L et al. Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon[J]. IEEE Photonics Technology Letters, 23, 869-871(2011). http://ieeexplore.ieee.org/document/5746500/

    [46] Yebo N A, Bogaerts W, Hens Z et al. On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor[J]. IEEE Photonics Technology Letters, 23, 1505-1507(2011). http://ieeexplore.ieee.org/document/5960773

    Xiaoling Chen, Juan Hu, Zhiqun Zhang, Li Ma, Hua Chen, Qing Fang. Research Progress in Silicon Photonic Arrayed Waveguide Grating Devices[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120009
    Download Citation