• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011009 (2021)
Runyu Huang1、2、**, Weilin Zhao1、2, Hui Zeng1、2, Zaibo Li1、2, Zepeng Hou1、2, Haifeng Ye1、2, Wei Wang1、2, Jiaxin Zhang1、2, Chen Liu1、2, Xueyan Yang1、2, Hongxia Zhu1、2, Yanli Shi1、2、*, and Yuntian Jiang3
Author Affiliations
  • 1School of Physics and Astronomy, Yunnan University, Kunming, Yunnan 650091, China
  • 2Key Laboratory of Quantum Information of Yunnan Province, Yunnan University, Kunming, Yunnan 650091, China
  • 3PLA 96901, Unit 24, Beijing 100094, China
  • show less
    DOI: 10.3788/LOP202158.1011009 Cite this Article Set citation alerts
    Runyu Huang, Weilin Zhao, Hui Zeng, Zaibo Li, Zepeng Hou, Haifeng Ye, Wei Wang, Jiaxin Zhang, Chen Liu, Xueyan Yang, Hongxia Zhu, Yanli Shi, Yuntian Jiang. Development and Application of InP-Based Single Photon Detectors[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011009 Copy Citation Text show less
    References

    [1] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 3, 696-705(2009).

    [2] Xie C. The research on single photon detector based on InGaAs/InP APD[D](2016).

    [3] Nishida K, Taguchi K, Matsumoto Y. InGaAsP heterostructure avalanche photodiodes with high avalanche gain[J]. Applied Physics Letters, 35, 251-253(1979). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.91089

    [4] Campbell J C, Dentai A G, Holden W S et al. High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions[J]. Electronics Letters, 19, 818-820(1983). http://ieeexplore.ieee.org/document/4248077/

    [5] Forrest S R, Kim O K, Smith R G. Optical response time of In0.53Ga0.47As/InP avalanche photodiodes[J]. Applied Physics Letters, 41, 95-98(1982).

    [6] Liu Y, Forrest S R, Hladky J et al. A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction[J]. Journal of Lightwave Technology, 10, 182-193(1992). http://ieeexplore.ieee.org/document/120573/citations

    [7] Itzler M A, Ben-Michael R, Hsu C F et al. Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications[J]. Journal of Modern Optics, 54, 283-304(2007). http://www.tandfonline.com/doi/abs/10.1080/09500340600792291

    [8] Fang Y Q, Chen W, Ao T H et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm[J]. Review of Scientific Instruments, 91, 083102(2020).

    [9] McIntyre R J. Multiplication noise in uniform avalanche diodes[J]. IEEE Transactions on Electron Devices, 13, 164-168(1966). http://ieeexplore.ieee.org/document/1474241

    [10] Nie H, Anselm K A, Lenox C et al. Resonant-cavity separate absorption, charge and multiplication avalanche photodiodes with high-speed and high gain-bandwidth product[J]. IEEE Photonics Technology Letters, 10, 409-411(1998). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/02041759984.html

    [11] Beck J D, Wan C F, Kinch M A et al. The HgCdTe electron avalanche photodiode[J]. Proceedings of SPIE, 5564, 44-53(2004).

    [12] Jones A H, Yuan Y, Ren M et al. AlxIn1-xAsySb1-y photodiodes with low avalanche breakdown temperature dependence[J]. Optics Express, 25, 24340-24345(2017).

    [13] Jones A H, Rockwell A K, March S D et al. High gain, low dark current Al0.8In0.2As0.23Sb0.77 avalanche photodiodes[J]. IEEE Photonics Technology Letters, 31, 1948-1951(2019). http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiBjNmQ0YjEwZjNmNWZiZDdhODY2ODFlZWU3NDA3ZmYwORoIZGk1amlmcDM%3D

    [14] Woodson M E, Ren M, Maddox S J et al. Low-noise AlInAsSb avalanche photodiode[J]. Applied Physics Letters, 108, 081102(2016). http://scitation.aip.org/content/aip/journal/apl/108/8/10.1063/1.4942372/cite/bibtex;jsessionid=1p4ees2vuakga.x-aip-live-06

    [15] Yi X, Xie S Y, Liang B L et al. Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes[J]. Nature Photonics, 13, 683-686(2019). http://www.nature.com/articles/s41566-019-0477-4

    [16] Yuan Y, Zheng J Y, Rockwell A K et al. AlInAsSb impact ionization coefficients[J]. IEEE Photonics Technology Letters, 31, 315-318(2019). http://ieeexplore.ieee.org/document/8620234

    [17] Jones A H, March S D, Bank S R et al. Low-noise high-temperature AlInAsSb/GaSb avalanche photodiodes for 2-μm applications[J]. Nature Photonics, 14, 559-563(2020). http://www.nature.com/articles/s41566-020-0637-6

    [18] Woodson M E, Ren M, Maddox S J et al. Publisher’s note: “low-noise AlInAsSb avalanche photodiode”[J]. Applied Physics Letters, 108, 129901(2016).

    [19] Rahman S N, Hall D, Lo Y H. Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms[J]. Journal of Applied Physics, 115, 173104(2014).

    [20] Hall D, Liu Y H, Lo Y H. Single photon avalanche detectors:prospects of new quenching and gain mechanisms[J]. Nanophotonics, 4, 397-412(2015). http://adsabs.harvard.edu/abs/2015Nanop...4...21H

    [21] Shushakov D A, Shubin V E. New solid state photomultiplier[J]. Proceedings of SPIE, 2397, 1-11(1995).

    [22] Zhao K, Zhang A, Lo Y H et al. InGaAs single photon avalanche detector with ultralow excess noise[J]. Applied Physics Letters, 91, 081107(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4831144

    [23] Cheng J, You S F, Zhao K et al. Self-quenched InGaAs single-photon detector[J]. Proceedings of SPIE, 7320, 732010(2009). http://spie.org/x648.xml?product_id=819950

    [24] Komobuchi H, Yamada T. An edge breakdown free MOS-avalanche photodiode image sensor cell[J]. IEEE Transactions on Consumer Electronics, 38, 590-594(1992).

    [25] Saveliev V, Golovin V. Silicon avalanche photodiodes on the base of metal-resistor-semiconductor (MRS) structures[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 442, 223-229(2000). http://www.sciencedirect.com/science/article/pii/S0168900299012255

    [26] Jiang X D, Itzler M A, O’Donnell K et al. Shortwave infrared negative feedback avalanche diodes and solid-state photomultipliers[J]. Optical Engineering, 53, 081908(2014).

    [27] Itzler M A, Jiang X D, Entwistle M et al. Advances in InGaAsP-based avalanche diode single photon detectors[J]. Journal of Modern Optics, 58, 174-200(2011). http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA1NzgzNGFjNTFlMTIxYTAxNjA3NzU3MDQ3YzA3MDJkORoINDVjMWQ1OWY%3D

    [28] Younger R D, McIntosh K A, Chludzinski J W et al. Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays[J]. Proceedings of SPIE, 7320, 73200Q(2009).

    [29] Itzler M A, Entwistle M, Owens M et al. InP-based Geiger-mode avalanche photodiode arrays for three-dimensional imaging at 1.06 μm[J]. Proceedings of SPIE, 7320, 73200O(2009).

    [30] Rech I, Ingargiola A, Spinelli R et al. In-depth analysis of optical crosstalk in single-photon avalanche diodearrays[J]. Proceedings of SPIE, 6771, 677111(2007).

    [31] Younger R D, Donnelly J P, Goodhue W D et al. Crosstalk characterization and mitigation in Geiger-mode avalanche photodiode arrays[C]. //2016 IEEE Photonics Conference (IPC), October 2-6, 2016, Waikoloa, HI, USA., 260-261(2016).

    [32] Verghese S, Donnelly J P, Duerr E K et al. Arrays of InP-based avalanche photodiodes forphoton counting[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 870-886(2007). http://ieeexplore.ieee.org/document/4303056

    [33] Jiang L A, Luu J X. Turbulence mitigation for coherent ladar using photon counting detector arrays[C]. //Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, June 25-30, 2006, Whistler, Canada, CWB 6(2006).

    [34] Calandri N, Sanzaro M, Motta L et al. Optical crosstalk in InGaAs/InP SPAD array: analysis and reduction with FIB-etched trenches[J]. IEEE Photonics Technology Letters, 28, 1767-1770(2016). http://ieeexplore.ieee.org/document/7473908/

    [35] Zheng L X, Yang J H, Liu Z et al. Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging[J]. Proceedings of SPIE, 8907, 890744(2013). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1737777

    [36] Zheng L X, Wu J, Zhang X C et al. Sensing detection and quenching method for InGaAs single-photon detector[J]. Acta Physica Sinica, 63, 104216(2014).

    [37] Yang J H. The design of fully integrated readout circuit based on avalanche photon diode sensor array[D](2014).

    [38] Wu G, Zhou C Y, Chen X L et al. High performance of gated-mode single-photon detector at 1.55 μm[J]. Optics Communications, 265, 126-131(2006). http://www.sciencedirect.com/science/article/pii/S0030401806002987

    [39] Zhang J, Itzler M A, Zbinden H et al. Advances in InGaAs/InP single-photon detector systems for quantum communication[J]. Light: Science & Applications, 4, e286(2015). http://www.nature.com/articles/lsa201559

    [40] Scholle K, Lamrini S, Koopmann P et al. 2 μm laser sources and their possible applications[M]. //Pal B. Frontiers in guided wave optics and optoelectronics(2010).

    [41] Ren M, Maddox S J, Woodson M E et al. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes[J]. Applied Physics Letters, 108, 191108(2016). http://scitation.aip.org/content/aip/journal/apl/108/19/10.1063/1.4949335

    [42] Bank S R, Campbell J C, Maddox S J et al. Avalanche photodiodes based on the AlInAsSb materials system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-7(2018). http://www.onacademic.com/detail/journal_1000040108485710_c0e1.html

    [43] Sidhu R, Zhang L, Tan N et al. 2.4 μm cut off wavelength avalanche photodiode on InP substrate[J]. Electronics Letters, 42, 181-182(2006). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1593316

    [44] Goh Y L, Ong D S G, Zhang S et al. InAlAs avalanche photodiode with type-II absorber for detection beyond 2 μm[J]. Proceedings of SPIE, 7298, 729837(2009).

    [45] Jackson J, Calder N. Quantum communications[J]. Bulletin of the Chinese Academy of Sciences(2016).

    [46] Ren M, Gu X R, Liang Y et al. Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector[J]. Optics Express, 19, 13497-13502(2011).

    [47] Pawlikowska A M, Halimi A, Lamb R A et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Optics Express, 25, 11919-11931(2017). http://europepmc.org/abstract/MED/28788749

    Runyu Huang, Weilin Zhao, Hui Zeng, Zaibo Li, Zepeng Hou, Haifeng Ye, Wei Wang, Jiaxin Zhang, Chen Liu, Xueyan Yang, Hongxia Zhu, Yanli Shi, Yuntian Jiang. Development and Application of InP-Based Single Photon Detectors[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011009
    Download Citation