• Laser & Optoelectronics Progress
  • Vol. 55, Issue 5, 050006 (2018)
Yujiao Li1、2、1; 2; , Nan Zong、1*; *; , and Qinjun Peng1、1;
Author Affiliations
  • 1 Key Laboratory of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP55.050006 Cite this Article Set citation alerts
    Yujiao Li, Nan Zong, Qinjun Peng. Characteristics and Progress of Vertical-Cavity Surface-Emitting Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050006 Copy Citation Text show less
    References

    [1] Hua L L, Yang Y. Characteristics and development of optically pumped vertical external cavity surface emitting lasers[J]. Material Review A: Review, 27, 64-69(2013).

    [2] Soda H, Iga K, Kitahara C et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 18, 2329-2330(1979). http://adsabs.harvard.edu/abs/1979jajap..18.2329s

    [3] Zhou D L, Seurin J F, Xu G Y et al. Progress on high-power, high-brightness VCSELs and applications[C]. SPIE, 9381, 93810B(2015).

    [4] Zhao P. Xu B, van Leeuwen R, et al. Compact 4.7 W, 18.3% wall-plug efficiency green laser based on an electrically pumped VECSEL using intracavity frequency doubling[J]. Optics Letters, 39, 4766-4768(2014).

    [5] Kuznetsov M, Hakimi F, Sprague R et al. High power (>0.5 W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams[J]. IEEE Photonics Technology Letter, 9, 1063-1065(1997). http://dx.doi.org/10.1109%2F68.605500

    [6] Okhotnikov O G. Chapter 1: VECSELsemiconductor lasers: a path to high-power, quality beam and UV to IR wavelength by design[M]. New York: Wiley-VCH Verlag, 1-71(2010).

    [7] Heinen B, Wang T L, Sparenberg M et al. 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser[J]. Electronics Letters, 48, 516-517(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6190844

    [8] Shi J J, Qin L, Ning Y Q et al. 850 nm vertical cavity surface-emitting laser arrays[J]. Optics and Precision Engineering, 20, 17-23(2012).

    [9] Zhou D L, Seurin J F, Xu G Y et al. Progress on vertical-cavity surface-emitting laser arrays for infrared illumination applications[C]. SPIE, 172-176(2014).

    [10] Seurin J F, Xu G, Khalfin V et al. Progress in high-power high-efficiency VCSEL arrays[J]. Proceedings of SPIE, 7229, 722903(2009). http://spie.org/Publications/Proceedings/Paper/10.1117/12.808294

    [12] Princeton Optronics[2017-11-06]. 4 W 850 nm VCSEL array[2017-11-06]http:∥www.princetonoptronics.com/wp-content/uploads/PCW-SMV-4-W0850-datasheet2.pdf..

    [13] Watkins L, Ghosh C, Seurin J F et al. High-power vertical-cavity surface-emitting lasers for atomic clock applications[J]. SPIE Newsroom(2015). http://spie.org/x115000.xml

    [14] D'Asaro L A. Seurin J F, Wynn J D. High-power, high-efficiency VCSELs pursue the goal[J]. Photonics Spectra, 39, 62-66(2005).

    [15] Wang L J, Ning Y Q, Qin L et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 36, 1-19(2015).

    [16] Hou H Q, Choquette K D, Geib K M et al. High-performance 1.06 μm selectively oxidized vertical-cavity surface-emitting lasers with InGaAs-GaAsP strain-compensated quantum wells[J]. IEEE Photonics Technology Letters, 9, 1057-1059(1997). http://www.opticsinfobase.org/abstract.cfm?uri=CLEO-1997-CWM2

    [17] Kageyama T, Takaki K, Imai S et al. High efficiency 1060nm VCSELS for low power consumption. [C]∥Proceedings of IEEE International Conference on Indium Phosphide and Related Materials, 109, 391-396(2009).

    [18] Boehm G, Ortsiefer M, Shau R et al. InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 μm[J]. Journal of Crystal Growth, 251, 748-753(2003). http://www.sciencedirect.com/science/article/pii/S0022024802021930

    [19] Klem J F, Serkland D K, Geib K M. Advances in 1300 nm InGaAsN quantum well VCSELs[C]. SPIE, 4646, 137-144(2002).

    [20] Nishida T, Takaya M, Kakinuma S et al. 4.2 mW GaInNAs long-wavelength VCSEL grown by metalorganic chemical vapor deposition[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 958-961(2005). http://ieeexplore.ieee.org/document/1564029/

    [21] Michalzik R. VCSELs: Fundamentals, technology and applications of vertical-cavity surface-emitting lasers[M]. Berlin: Springer-Verlag, 353-377(2013).

    [22] Omae K, Higuchi Y, Nakagawa K et al. Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN Substrate[J]. Applied Physics Express, 2, 052101(2009). http://adsabs.harvard.edu/abs/2009APExp...2e2101O

    [23] Kasahara D, Morita D, Kosugi T et al. Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature[J]. Applied Physics Express, 4, 072103(2011). http://adsabs.harvard.edu/abs/2011APExp...4g2103K

    [24] Hamaguchi T, Fuutagawa N, Izumi S et al. Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth[J]. Physica Status Solidi (A) Applications and Materials Science, 213, 1170-1176(2016). http://onlinelibrary.wiley.com/doi/10.1002/pssa.201532759/pdf

    [25] Johnson K, Hibbs-Brenner M. High output power 670 nm VCSELs[C]. Proceedings of SPIE, 6484, 648404(2007).

    [26] Seurin J F, Khalfin V, Xu G Y et al. High-power red VCSEL arrays[C]. Proceedings of SPIE, 8639, 86390O(2013).

    [27] McInerney J G, Mooradian A, Lewis A et al. . High-power surface emitting semiconductor laser with extended vertical compound cavity[J]. Electronics Letters, 39, 523-525(2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1192208

    [28] Shchegrov A V, Umbrasas A, Watson J P et al. 532 nm laser sources based on intracavity frequency doubling of extended-cavity surface-emitting diode lasers[C]. Proceedings of SPIE, 5332, 151-156(2004).

    [29] Watson J, Shchegrov A, Umbrasas A et al. Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers[C]. Proceedings of SPIE, 5364, 116-121(2004).

    [30] Leeuwen R V, Seurin J F, Xu G Y et al. High power pulsed intracavity frequency doubled vertical extended cavity blue laser arrays[C]. Proceedings of SPIE, 7193, 71931D(2009).

    [31] Zhang L S[D]. Structure design and fabrication of high power vertical cavity surface emitting laser Changchun : Graduate University of Chinese Academy of Sciences(Changchun Institute of Optics, Fine Mechanics and P, 2012.

    [32] Kurdi M E, Bouchoule S, Bousseksou A et al. Room-temperature continuous-wave laser operation of electrically-pumped 1.55 μm VECSEL[J]. Electronics Letters, 40, 671-672(2004). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1302796

    [33] Bousseksou A, Bouchoule S, Kurdi M E et al. Fabrication and characterization of 1.55 μm single transverse mode large diameter electrically pumped VECSEL[J]. Optical and Quantum Electronics, 38, 1269-1278(2006). http://link.springer.com/article/10.1007/s11082-007-9060-1

    [34] Härkönen A, Bachmann A, Arafin S et al. 2.34 μm electrically pumped VECSEL with buried tunnel junction[C]. Proceedings of SPIE, 7720, 772015(2010).

    [35] Zhang W, Ackemann T. McGinily S, et al. Operation of an optical in-well pumped vertical-external-cavity surface-emitting laser[J]. Applied Optics, 45, 7729-7735(2006). http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-29-7729

    [36] Beyertt S S, Brauch U, Demaria F et al. Efficient gallium-arsenide disk laser[J]. IEEE Journal of Quantum Electronics, 43, 869-875(2007). http://ieeexplore.ieee.org/document/4300915/

    [37] Chilla J L A, Butterworth S D, Zeitschel A et al. . High power optically pumped semiconductor lasers[C]. Proceedings of SPIE, 5332, 143-150(2004).

    [38] Rudin B, Rutz A, Hoffmann M et al. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode[J]. Optics Letters, 33, 2719-2721(2008). http://www.ncbi.nlm.nih.gov/pubmed/19015720

    [39] Lee J H, Kim J Y, Lee S M et al. 9.1 W High-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser[J]. IEEE Photonics Technology Letters, 18, 2117-2119(2006). http://ieeexplore.ieee.org/document/1705503/

    [40] Zhang F, Heinen B, Wichmann M et al. A 23 watt single-frequency vertical-external-cavity surface-emitting laser[J]. Optics Express, 22, 12817-12822(2014). http://www.ncbi.nlm.nih.gov/pubmed/24921477

    [41] Kantola E, Leinonen T, Ranta S et al. 1180 nm VECSEL with 50 W output power[C]. Proceedings of SPIE, 9349, 93490U(2015).

    [42] Leinonen T, Iakovlev V, Sirbu A et al. 33 W continuous output power semiconductor disk laser emitting at 1275 nm[J]. Optics Express, 25, 7008-7013(2017). http://www.ncbi.nlm.nih.gov/pubmed/28381042

    [43] Lyytikäinen J, Rautiainen J, Toikkanen L et al. 1.3 μm optically-pumped semiconductor disk laser by wafer fusion[J]. Optics Express, 17, 9047-9052(2009). http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-11-9047

    [44] Rautiainen J, Lyytikäinen J, Sirbu A et al. 2.6 W optically-pumped semiconductor disk laser operating at 1.57 μm using wafer fusion[J]. Optics Express, 16, 21881-21886(2008). http://europepmc.org/abstract/MED/19104620

    [45] Rantamäki A, Rautiainen J, Sirbu A et al. 1.56 μm 1 watt single frequency semiconductor disk laser[J]. Optics Express, 21, 2355-2360(2013). http://www.opticsinfobase.org/abstract.cfm?uri=oe-21-2-2355

    [46] Lyytikäinen J, Rautiainen J, Sirbu A et al. High-power 1.48 μm wafer-fused optically pumped semiconductor disk laser[J]. IEEE Photonics Technology Letters, 23, 917-919(2011). http://ieeexplore.ieee.org/document/5751633/

    [47] Sirbu A, Rantamäki A, Saarinen E J et al. High performance wafer-fused semiconductor disk lasers emitting in the 1300 nm waveband[J]. Optics Express, 22, 29398-29403(2014). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-24-29398

    [48] Hopkins J M, Hempler N, Rösener B et al. High-power, (AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm[J]. Optics Letters, 33, 201-203(2008). http://www.opticsinfobase.org/abstract.cfm?id=148916

    [49] Holl P, Rattunde M, Adler S et al. Recent advances in power scaling of GaSb-based semiconductor disk lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 1501012(2015). http://ieeexplore.ieee.org/document/7064765/

    [50] Holl P, Rattunde M, Adler S et al. GaSb-based VECSEL for high-power applications and Ho-pumping[C]. SPIE, 10087, 1008705(2017).

    [51] Ishida A, Sugiyama Y, Isaji Y et al. 2 W high efficiency PbS mid-infrared surface emitting laser[J]. Applied Physics Letters, 99, 121109(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6026175

    [52] Khiar A, Volobuev V, Witzan M et al. In-well pumped mid-infrared PbTe/CdTe quantum well vertical external cavity surface emitting lasers[J]. Applied Physics Letters, 104, 231105(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6828677

    [53] Rahim M, Felder F, Fill M et al[J]. Optically pumped 5 μm IV-VI VECSEL with Al-heat spreader Optics Letters, 33, 3010-3012.

    [54] Debusmann R, Brauch U, Hoffmann V et al. Spacer and well pumping of InGaN vertical cavity semiconductor lasers with varying number of quantum wells[J]. Journal of Applied Physics, 112, 033110(2012). http://scitation.aip.org/content/aip/journal/jap/112/3/10.1063/1.4745025

    [55] Baumgärtner S, Kahle H, Bek R et al. Comparison of AlGaInP-VECSEL gain structures[J]. Journal of Crystal Growth, 414, 219-222(2015). http://www.sciencedirect.com/science/article/pii/S0022024814007015

    [56] Mateo C M N, Brauch U, Kahle H et al. . 2.5 W continuous wave output at 665 nm from a multipass and quantum-well-pumped AlGaInP vertical-external-cavity surface-emitting laser[J]. Optics Letters, 41, 1245-1248(2016). http://www.opticsinfobase.org/abstract.cfm?uri=ol-41-6-1245

    [57] Zhou H L, Diagne M, Makarona E et al. Near ultraviolet optically pumped vertical cavity laser[J]. Electronics Letters, 36, 1777-1779(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=878562

    [58] Zaugg C A, Gronenborn S, Moench H et al. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser[J]. Applied Physics Letters, 104, 121115(2014). http://scitation.aip.org/content/aip/journal/apl/104/12/10.1063/1.4870048

    [59] Kornaszewski L, Maker G. Malcolm G P A, et al. SESAM-free mode-locked semiconductor disk laser[J]. Laser & Photonics Reviews, 6, 20-23(2012).

    [60] Quarterman A H, Wilcox K G, Apostolopoulos V et al. A passively mode-locked external-cavity semiconductor laser emitting 60 fs pulses[J]. Nature Photonics, 3, 729-731(2009). http://www.nature.com/nphoton/journal/v3/n12/abs/nphoton.2009.216.html

    [61] Wilcox K G, Quarterman A H, Apostolopoulos V et al. 175 GHz, 400 fs-pulse harmonically mode-locked surface emitting semiconductor laser[J]. Optics Express, 20, 7040-7045(2012). http://labs.europepmc.org/abstract/MED/22453384

    [62] Rudin B, Wittwer V J. Maas D J H C, et al. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power[J]. Optics Express, 18, 27582-27588(2010). http://europepmc.org/abstract/med/21197032

    [63] Wilcox K G, Tropper A C, Beere H E et al. 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation[J]. Optics Express, 21, 1599-1605(2013). http://www.ncbi.nlm.nih.gov/pubmed/23389144

    [64] Husaini S, Bedford R G. Graphene saturable absorber for high power semiconductor disk laser mode-locking[J]. Applied Physics Letter, 104, 161107(2014). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6804607

    [65] Lubeigt W, Bialkowski B, Lin J P et al. Commercial mode-locked vertical external cavity surface emitting lasers[C]. SPIE, 10087, 100870D(2017).

    [66] Scheller M, Baker C W, Koch S W et al. High power dual-wavelength VECSEL based on a multiple folded cavity[J]. IEEE Photonics Technology Letters, 29, 790-793(2017). http://ieeexplore.ieee.org/document/7884958/

    [67] Hoogland S, Dhanjal S, Tropper A C et al. Passively mode-locked diode-pumped surface-emitting semiconductor laser[J]. IEEE Photonics Technology Letters, 12, 1135-1137(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=874213

    [68] Kottke C, Caspar C, Jungnicke Vet al. High speed 160 Gb/s DMT VCSEL transmission using pre-equalization[C]. W41:, W4I, 7(2017).

    [69] Chen X, Hurley J, Stone J et al. Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm. [C]∥Proceedings of IEEE Optical Fiber Communications Conference and Exhibition(2016).

    [70] Kuchta D M, Huynh T N, Doany F E et al. Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link[J]. Journal of Lightwave Technology, 34, 3275-3282(2016). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7341677

    [71] Gierl C, Gruendl T, Debernardi P et al. Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning[J]. Optics Express, 19, 17336-17343(2011). http://europepmc.org/abstract/MED/21935097

    [72] Matsui Y, Vakhshoori D, Wang P D et al. Complete polarization mode control of long-wave length tunable vertical-cavity surface-emitting lasers over 65 nm tuning, up to 14 mW output power[J]. IEEE Journal of Quantum Electronics, 39, 1037-1048(2003). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1225820

    [73] Jayaraman V, Cole G D, Robertson M et al. High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range[J]. Electronics Letters, 48, 867-869(2012). http://www.ncbi.nlm.nih.gov/pubmed/23976788

    [74] Zong N, Li C M, Chen Y H et al. Research and progress of optically pumped semiconductor vertical-external-cavity surface-emitting lasers[J]. Infrared and Laser Engineering, 36, 785-789(2007).

    [75] Harkonen A. Antimonide disk lasers achieve multiwatt power and a wide tuning range[J]. SPIE Newsroom(2009). http://spie.org/x34747.xml

    [76] Ouvrard A, Garnache A, Cerutti L et al. Single-frequency tunable Sb-based VCSELs emitting at 2.3 μm[J]. IEEE Photonics Technology Letters, 17, 2020-2022(2005). http://ieeexplore.ieee.org/document/1512259/

    [77] Jiang L D, Zhang X H, Zhan X H et al. Progress in frequency- doubled external-cavity surface-emitting laser[J]. Laser & Optoelectronics Progress, 53, 090001(2016).

    [78] Hunziker L E, Ihli C, Steingrube D S. Miniaturization and power scaling of fundamental mode optically pumped semiconductor lasers[J]. IEEE Journal of Selected Topics Quantum Electron, 13, 610-618(2007).

    [79] Chilla J, Shu Q Z, Zhou H L et al. Recent advances in optically pumped semiconductor lasers[C]. SPIE, 6451, 645109(2007).

    [80] Chilla J L A, Zhou H L, Weiss E et al. . Blue and green optically pumped semiconductor lasers for display[C]. SPIE, 5740, 41-47(2005).

    [81] Rautiainen J, Härkönen A, Korpijärvi V M et al. 2.7 W tunable orange-red GaInNAs semiconductor disk laser[J]. Optics Express, 15, 18345-18350(2007).

    [82] Kantola E, Leinonen T, Ranta S et al. High-efficiency 20 W yellow VECSEL[J]. Optics Express, 22, 6372-6380(2014).

    [83] Hessenius C, Lukowski M, Moloney J et al. Tunable single-frequency yellow laser for sodium guidestar applications[J]. SPIE Newsroom(2012).

    [84] Kantola E, Leinonen T, Penttinen J P et al. 615 nm GaInNAs VECSEL with output power above 10 W[J]. Optics Express, 23, 20280-20287(2015).

    [85] Yakshin M, Hessenius C, Prasad C et al. A compact, efficient deep UV optically pumped VECSEL[C]. CLEO: Science and Innovations, SM3M, 4(2017).

    [86] Bedford R G, Kolesik M. Chilla J L A, et al. Power-limiting mechanisms in VECSELs[C]. Proceedings of SPIE, 5814, 199-208(2005).

    [87] Zhang P, Dai T L, Liang Y P et al. Optimization of pump pulses in a vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 40, 0402001(2013).

    [88] Liu X N, Wang X H, Wang F et al. Analysis of thermal characteristics in optically pumped semiconductor vertical-external-cavity surface-emitting laser with doubled heatspreader[J]. Laser & Optoelectronics Progress, 48, 091404(2011).

    [89] Kaneda Y, Fan L, Hsu T C et al. High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 18, 1795-1797(2006).

    [90] Park S H, Kim J, Jeon H et al. Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme[J]. Applied Physics Letters, 83, 2121-2123(2003).

    [91] Park S H, Jeon H. Microchip-type InGaN vertical external-cavity surface-emitting laser[J]. Optical Review, 13, 20-23(2006).

    [92] Leinonen T, Ranta S, Laakso A et al. Dual-wavelength generation by vertical external cavity surface-emitting laser[J]. Optics Express, 15, 13451-13456(2007).

    [93] Leinonen T, Morozov Y A, Harkonen A et al. Vertical external-cavity surface-emitting laser for dual-wavelength generation[J]. IEEE Photonics Technology Letters, 17, 2508-2510(2005).

    [94] Illek S, Albrecht T, Brick P et al. Vertical-external-cavity surface-emitting laser with monolithically integrated pump lasers[J]. IEEE Photonics Technology Letters, 19, 1952-1954(2007).

    [95] Bellancourt A R, Rudin B et al. . Vertical integration of ultrafast semiconductor lasers[J]. Applied Physics B, 88, 493-497(2007).

    Yujiao Li, Nan Zong, Qinjun Peng. Characteristics and Progress of Vertical-Cavity Surface-Emitting Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050006
    Download Citation