• Journal of Semiconductors
  • Vol. 44, Issue 3, 032201 (2023)
Xian’e Li1、*, Qilun Zhang1、2, Xianjie Liu1, and Mats Fahlman1、2
Author Affiliations
  • 1Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, SE-60174, Norrköping, Sweden
  • 2Wallenberg Wood Science Center, Department of Science and Technology (ITN), Linköping University, SE-60174, Norrköping, Sweden
  • show less
    DOI: 10.1088/1674-4926/44/3/032201 Cite this Article
    Xian’e Li, Qilun Zhang, Xianjie Liu, Mats Fahlman. Pinning energies of organic semiconductors in high-efficiency organic solar cells[J]. Journal of Semiconductors, 2023, 44(3): 032201 Copy Citation Text show less
    References

    [1] G Hong, X Gan, C Leonhardt et al. A brief history of OLEDs—emitter development and industry milestones. Adv Mater, 33, 2005630(2021).

    [2] L Torsi, M Magliulo, K Manoli et al. Organic field-effect transistor sensors: a tutorial review. Chem Soc Rev, 42, 8612(2013).

    [3] H Ren, J De Chen, Y Q Li et al. Recent progress in organic photodetectors and their applications. Adv Sci, 8, 2002418(2021).

    [4] Z Zhao, B Liu, C Xie et al. Highly sensitive, sub-microsecond polymer photodetectors for blood oxygen saturation testing. Sci Chin, 64, 1302(2021).

    [5] Z Zhao, C Xu, Y Ma et al. Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry−Pérot resonator architecture. Adv Funct Mater, 32, 2203606(2022).

    [6] P Cheng, G Li, X Zhan et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics, 12, 131(2018).

    [7] Y Liang, D Feng, Y Wu et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc, 131, 7792(2009).

    [8] S Li, L Ye, W Zhao et al. A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J Am Chem Soc, 140, 7159(2018).

    [9] Y Xu, Y Cui, H Yao et al. A new conjugated polymer that enables the integration of photovoltaic and light-emitting functions in one device. Adv Mater, 33, 2101090(2021).

    [10] J Qin, L Zhang, C Zuo et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 42, 010501(2021).

    [11] H Yang, C Cui, Y Li. Effects of heteroatom substitution on the photovoltaic performance of donor materials in organic solar cells. Accounts Mater Res, 2, 986(2021).

    [12] W Xu, X Li, S Y Jeong et al. Achieving 17.5% efficiency for polymer solar cells via a donor and acceptor layered optimization strategy. J Mater Chem C, 10, 5489(2022).

    [13] W Xu, X Zhu, X Ma et al. Achieving 15.81% and 15.29% efficiency of all-polymer solar cells based on layer-by-layer and bulk heterojunction structures. J Mater Chem A, 10, 13492(2022).

    [14] Y Liu, Y Wu, Y Geng et al. Managing challenges in organic photovoltaics: properties and roles of donor/acceptor interfaces. Adv Funct Mater, 32, 2206707(2022).

    [15] J Bertrandie, J Han, C S P De Castro et al. The energy level conundrum of organic semiconductors in solar cells. Adv Mater, 34, 2202575(2022).

    [16] S Duhm. Interface energetics in organic electronic devices. Elsevier, 143(2021).

    [17] B S Braun, W R Salaneck, M Fahlman. Energy-level alignment at organic/metal and organic/organic interfaces. Adv Mater, 21, 1450(2009).

    [18] M Fahlman, S Fabiano, V Gueskine et al. Interfaces in organic electronics. Nat Rev Mater, 4, 627(2019).

    [19] H Aarnio, P Sehati, S Braun et al. Spontaneous charge transfer and dipole formation at the interface between P3HT and PCBM. Adv Energy Mater, 1, 792(2011).

    [20] M Fahlman, P Sehati, W Osikowicz et al. Photoelectron spectroscopy and modeling of interface properties related to organic photovoltaic cells. J Electron Spectrosc Relat Phenom, 190, 33(2013).

    [21] Q Bao, O Sandberg, D Dagnelund et al. Trap-assisted recombination via integer charge transfer states in organic bulk heterojunction photovoltaics. Adv Funct Mater, 24, 6309(2014).

    [22] C Wang, F Moro, S Ni et al. Thermal-annealing effects on energy level alignment at organic heterojunctions and corresponding voltage losses in all-polymer solar cells. Nano Energy, 72, 104677(2020).

    [23] D Li, L Zhu, X Liu et al. Enhanced and balanced charge transport boosting ternary solar cells over 17% efficiency. Adv Mater, 32, 2002344(2020).

    [24] C Tengstedt, W Osikowicz, W R Salaneck et al. Fermi-level pinning at conjugated polymer interfaces. Appl Phys Lett, 88, 053502(2006).

    [25] L Lindell, D Çakr, G Brocks et al. Role of intrinsic molecular dipole in energy level alignment at organic interfaces. Appl Phys Lett, 102, 223301(2013).

    [26] C Wang, X Xu, W Zhang et al. Ternary organic solar cells with enhanced open circuit voltage. Nano Energy, 37, 24(2017).

    [27] C Wang, S Ni, S Braun et al. Effects of water vapor and oxygen on non-fullerene small molecule acceptors. J Mater Chem C, 7, 879(2019).

    [28] Q Bao, S Fabiano, M Andersson et al. Energy level bending in ultrathin polymer layers obtained through Langmuir-Shäfer deposition. Adv Funct Mater, 26, 1077(2016).

    [29] X Li, Q Zhang, J Yu et al. Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nat Commun, 13, 2046(2022).

    [30] A Atxabal, S Braun, T Arnold et al. Energy level alignment at metal/solution-processed organic semiconductor interfaces. Adv Mater, 29, 1606901(2017).

    [31] Q Bao, S Braun, C Wang et al. Interfaces of (ultra)thin polymer films in organic electronics. Adv Mater Interfaces, 6, 1800897(2019).

    [32] Y Chen, X Liu, S Braun et al. Image-force effects on energy level alignment at electron transport material/cathode interfaces. J Mater Chem C, 8, 173(2019).

    [33] S Holliday, R S Ashraf, A Wadsworth et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat Commun, 7, 11585(2016).

    [34] C Yang, R Yu, C Liu et al. Achieving over 10 % efficiency in poly(3-hexylthiophene)-based organic solar cells via solid additives. ChemSusChem, 14, 3607(2021).

    [35] V I Arkhipov, P Heremans, H Bässler. Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor?. Appl Phys Lett, 82, 4605(2003).

    Xian’e Li, Qilun Zhang, Xianjie Liu, Mats Fahlman. Pinning energies of organic semiconductors in high-efficiency organic solar cells[J]. Journal of Semiconductors, 2023, 44(3): 032201
    Download Citation