• Laser & Optoelectronics Progress
  • Vol. 57, Issue 21, 210607 (2020)
Wu Mei1、2, Wang Longsheng1、2, Wang Yuncai1、3、4, and Wang Anbang1、2、3、*
Author Affiliations
  • 1新型传感器与智能控制教育部重点实验室(太原理工大学), 山西 太原 030024
  • 2太原理工大学物理与光电工程学院, 山西 太原 030024
  • 3广东工业大学信息工程学院, 广东 广州 510006
  • 4广东省光子学信息技术重点实验室, 广东 广州 510006
  • show less
    DOI: 10.3788/LOP57.210607 Cite this Article Set citation alerts
    Wu Mei, Wang Longsheng, Wang Yuncai, Wang Anbang. Research on Chaos Resynchronization Time of Vertical-Cavity Surface-Emitting Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210607 Copy Citation Text show less
    References

    [1] Van Wiggeren G D. Communication with chaotic lasers[J]. Science, 279, 1198-1200(1998).

    [2] Argyris A, Syvridis D, Larger L et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 438, 343-346(2005).

    [3] Lavrov R, Jacquot M, Larger L. Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications[J]. IEEE Journal of Quantum Electronics, 46, 1430-1435(2010).

    [4] Argyris A, Bourmpos M, Syvridis D. Experimental synchrony of semiconductor lasers in coupled networks[J]. Optics Express, 24, 5600-5614(2016). http://www.ncbi.nlm.nih.gov/pubmed/29092382

    [5] Li Q, Deng T, Wu Z M et al. Security-enhanced bidirectional long-distance chaos secure communication[J]. Chinese Journal of Lasers, 45, 0106001(2018).

    [6] Li Z, Feng Y L, Yao Z H. Auto correlation and bandwidth research of chaotic laser from semiconductor lasers[J]. Laser & Optoelectronics Progress, 55, 021405(2018).

    [7] Sun W Y, Hu B J, Wang H. Chaos synchronization communication based on dual-path mutual coupling semiconductor lasers[J]. Laser & Optoelectronics Progress, 56, 211404(2019).

    [8] Lü T S, Yang Q, Yu X Y et al. 50 GHz broadband chaotic signal generator[J]. Laser & Optoelectronics Progress, 56, 131403(2019).

    [9] Wang D M, Wang L S, Guo Y Y et al. Key space enhancement of optical chaos secure communication:chirped FBG feedback semiconductor laser[J]. Optics Express, 27, 3065-3073(2019).

    [10] Yoshimura K, Muramatsu J, Davis P et al. Secure key distribution using correlated randomness in lasers driven by common random light[J]. Physical Review Letters, 108, 070602(2012).

    [11] Koizumi H, Morikatsu S, Aida H et al. Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers[J]. Optics Express, 21, 17869-17893(2013).

    [12] Sasaki T, Kakesu I, Mitsui Y et al. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution[J]. Optics Express, 25, 26029-26044(2017).

    [13] Xue C P, Jiang N, Lv Y et al. Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems[J]. IEEE Transactions on Communications, 65, 312-319(2016).

    [14] Xue C P, Jiang N, Qiu K et al. Key distribution based on synchronization in bandwidth-enhanced random bit generators with dynamic post-processing[J]. Optics Express, 23, 14510-14519(2015). http://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-11-14510

    [15] Jiang N, Xue C P, Liu D et al. Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection[J]. Optics Letters, 42, 1055-1058(2017).

    [16] Zhao Z X, Cheng M F, Luo C K et al. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution[J]. Optics Letters, 44, 2605-2608(2019).

    [17] Xu M F, Pan W, Zhang L Y. Secure remote synchronization and secure key distribution in electro-optic networks revealed by symmetries[J]. Optics Communications, 418, 41-45(2018).

    [18] Vicente R, Pérez T, Mirasso C R. Open-versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 38, 1197-1204(2002).

    [19] Uchida A, Shibasaki N, Nogawa S et al. Transient characteristics of chaos synchronization in a semiconductor laser subject to optical feedback[J]. Physical Review E, 69, 056201(2004). http://www.ncbi.nlm.nih.gov/pubmed/15244898

    [20] Hong Y H, Lee M W, Paul J et al. GHz bandwidth message transmission using chaotic vertical-cavity surface-emitting lasers[J]. Journal of Lightwave Technology, 27, 5099-5105(2009).

    [21] Deng T, Xia G Q, Wu Z M. Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection[J]. Nonlinear Dynamics, 76, 399-407(2014).

    [22] Li N Q, Susanto H, Cemlyn B et al. Secure communication systems based on chaos in optically pumped spin-VCSELs[J]. Optics Letters, 42, 3494-3497(2017).

    [23] Zhang H, Guo X X, Xiang S Y. Key distribution based on unidirectional injection of vertical cavity surface emitting laser system[J]. Acta Physica Sinica, 67, 204202(2018).

    [24] Ding Z Y, Fan L, Chen J J. Generation of wide-bandwidth polarized chaotic signals based on VCSEL subject to dual chaotic optical injection[J]. Acta Optica Sinica, 39, 0214002(2019).

    [25] Martin-Regalado J, Prati F, San Miguel M et al. Polarization properties of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 33, 765-783(1997).

    [26] Quirce A, de Dios C, Valle A et al. Polarization dynamics in VCSEL-based gain switching optical frequency combs[J]. Journal of Lightwave Technology, 36, 1798-1806(2018).

    [27] Pérez P, Valle A, Pesquera L. Polarization-resolved characterization of long-wavelength vertical-cavity surface-emitting laser parameters[J]. Journal of the Optical Society of America B, 31, 2574-2480(2014).

    [28] Xiang S Y, Pan W, Yan L S et al. Polarization properties of vertical-cavity surface-emitting lasers subject to feedback with variably rotated polarization angle[J]. Applied Optics, 48, 5176-5183(2009).

    [29] Xiang S Y, Pan W, Yan L S et al. Impact of unpredictability on chaos synchronization of vertical-cavity surface-emitting lasers with variable-polarization optical feedback[J]. Optics Letters, 36, 3497-3499(2011).

    [30] Xiao P, Wu Z M, Wu J G et al. Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback[J]. Optics Communications, 286, 339-343(2013). http://www.sciencedirect.com/science/article/pii/S0030401812009315

    [31] Murakami A, Kawashima K, Atsuki K. Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection[J]. IEEE Journal of Quantum Electronics, 39, 1196-1204(2003).

    Wu Mei, Wang Longsheng, Wang Yuncai, Wang Anbang. Research on Chaos Resynchronization Time of Vertical-Cavity Surface-Emitting Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210607
    Download Citation