• Chinese Optics Letters
  • Vol. 20, Issue 4, 041402 (2022)
Chaoyong Chen1、2, Chunqing Gao1、2、*, Huixing Dai1、2, and Qing Wang1、2
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Information Technology, Ministry of Industry and Information Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/COL202220.041402 Cite this Article Set citation alerts
    Chaoyong Chen, Chunqing Gao, Huixing Dai, Qing Wang. Single-frequency Er:YAG ceramic pulsed laser with frequency stability close to 100 kHz[J]. Chinese Optics Letters, 2022, 20(4): 041402 Copy Citation Text show less
    References

    [1] V. Wulfmeyer, M. Randall, A. Brewer, R. M. Hardesty. 2-µm Doppler lidar transmitter with high frequency stability and low chirp. Opt. Lett., 25, 1228(2000).

    [2] Y. Zhu, J. Yang, X. Chen, X. Zhu, J. Zhang, S. Li, Y. Sun, X. Hou, D. Bi, L. Bu, Y. Zhang, J. Liu, W. Chen. Airborne validation experiment of 1.57-µm double-pulse IPDA LIDAR for atmospheric carbon dioxide measurement. Remote Sens., 12, 1999(2020).

    [3] N. Cezard, S. Le Mehaute, J. Le Gouet, M. Valla, D. Goular, D. Fleury, C. Planchat, A. Dolfi-Bouteyre. Performance assessment of a coherent DIAL-Doppler fiber lidar at 1645 nm for remote sensing of methane and wind. Opt. Express, 28, 22345(2020).

    [4] X. Zhu, J. Liu, D. Bi, J. Zhou, W. Diao, W. Chen. Development of all-solid coherent Doppler wind lidar. Chin. Opt. Lett., 10, 012801(2012).

    [5] W. Diao, X. Zhang, J. Liu, X. Zhu, Y. Liu, D. Bi, W. Chen. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers. Chin. Opt. Lett., 12, 072801(2014).

    [6] Z. Bu, S. Chen, Y. Zhang, H. Chen, X. Ge, P. Guo. Effect of laser pulse shape and duration on spectrum width of coherent LIDAR. Chin. Opt. Lett., 12, S12801(2014).

    [7] X. Sun, J. Liu, J. Zhou, W. Chen. Frequency stabilization of a single-frequency all-solid-state laser for Doppler wind lidar. Chin. Opt. Lett., 6, 679(2008).

    [8] J. Caron, Y. Durand. Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2. Appl. Opt., 48, 5413(2009).

    [9] F. Gibert, D. Edouart, C. Cénac, F. Le Mounier. 2-µm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application. Appl. Phys. B, 116, 967(2014).

    [10] P. Kucirek, A. Meissner, S. Nyga, J. Mertin, M. Höfer, H.-D. Hoffmann. A single-frequency Ho:YLF pulsed laser with frequency stability better than 500 kHz. Proc. SPIE, 10082, 100821K(2017).

    [11] O. Lux, D. Wernham, P. Bravetti, P. McGoldrick, O. Lecrenier, W. Riede, A. D’Ottavi, V. De Sanctis, M. Schillinger, J. Lochard, J. Marshall, C. Lemmerz, F. Weiler, L. Mondin, A. Ciapponi, T. Kanitz, A. Elfving, T. Parrinello, O. Reitebuch. High-power and frequency-stable ultraviolet laser performance in space for the wind lidar on Aeolus. Opt. Lett., 45, 1443(2020).

    [12] F. Shen, Z. Wang, Y. Xia, B. Wang, P. Zhuang, C. Qiu. Quad-Fabry–Perot etalon based Rayleigh Doppler lidar for 0.2-60 km altitude wind, temperature and aerosol accurate measurement. Optik, 236, 166668(2021).

    [13] J. Du, Y. Sun, D. Chen, Y. Mu, M. Huang, Z. Yang, J. Liu, D. Bi, X. Hou, W. Chen. Frequency-stabilized laser system at 1572 nm for space-borne CO2 detection LIDAR. Chin. Opt. Lett., 15, 031401(2017).

    [14] L. A. Rahn. Feedback stabilization of an injection-seeded Nd:YAG laser. Appl. Opt., 24, 940(1985).

    [15] S. W. Henderson, E. H. Yuen, E. S. Fry. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers. Opt. Lett., 11, 715(1986).

    [16] Y. Zhang, C. Gao, Q. Wang, Q. Na, M. Zhang, M. Gao, S. Huang. 1 kHz single-frequency, injection-seeded Er:YAG laser with an optical feedback. Chin. Opt. Lett., 17, 031402(2019).

    [17] C. E. Hamilton. Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision. Opt. Lett., 17, 728(1992).

    [18] A. Sträßer, T. Waltinger, M. Ostermeyer. Injection seeded frequency stabilized Nd:YAG ring oscillator following a Pound–Drever–Hall scheme. Appl. Opt., 46, 8358(2007).

    [19] M. Ostermeyer, T. Waltinger, M. Gregor. Frequency stabilization of a Q-switched Nd:YAG laser oscillator with stability better 300 kHz following an rf-sideband scheme. Opt. Commun., 282, 3302(2009).

    [20] F. Gibert, D. Edouart, C. Cénac, F. Le Mounier, A. Dumas. 2-µm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere. Opt. Lett., 40, 3093(2015).

    [21] C. Chen, Q. Wang, S. Huang, X. Zhang, K. Wang, M. Gao, C. Gao. Single-frequency Q-switched Er:YAG laser with high frequency and energy stability via the Pound–Drever–Hall locking method. Opt. Lett., 45, 3745(2020).

    [22] D. S. Zrnic. Estimation of spectral moments for weather echoes. IEEE Trans. Geosci. Electron., 17, 113(1979).

    [23] R. Frehlich, M. Yadlowsky. Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Ocean. Technol., 11, 1217(1994).

    [24] Y. Zheng, C. Gao, R. Wang, M. Gao, Q. Ye. Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode. Opt. Lett., 38, 784(2013).

    [25] C. Chen, Z. Li, X. Jin, Y. Zheng. Resonant photodetector for cavity- and phase-locking of squeezed state generation. Rev. Sci. Instrum, 87, 103114(2016).

    [26] D. W. Allan. Statistics of atomic frequency standards. Proc. IEEE, 54, 221(1966).

    Data from CrossRef

    [1] Xin Huang, Jin He, Yiguang Jiang, Weerapong Chewpraditkul, Long Zhang. Ultrafast GGAG:Ce X-ray scintillation ceramics with Ca2+ and Mg2+ co-dopants. Ceramics International(2022).

    Chaoyong Chen, Chunqing Gao, Huixing Dai, Qing Wang. Single-frequency Er:YAG ceramic pulsed laser with frequency stability close to 100 kHz[J]. Chinese Optics Letters, 2022, 20(4): 041402
    Download Citation