• Laser & Optoelectronics Progress
  • Vol. 54, Issue 9, 90005 (2017)
Wang Shiling* and Fang Fengzhou
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.090005 Cite this Article Set citation alerts
    Wang Shiling, Fang Fengzhou. High Power Laser and Its Development[J]. Laser & Optoelectronics Progress, 2017, 54(9): 90005 Copy Citation Text show less
    References

    [1] Basov N G, Krokhin O N, Popov Y M. Obtainment of the negative temperature state in the p-n junctions of degenerate semiconductors[J]. Zhur Eksptli Teoret Fiz, 1961, 40.

    [2] Hall R N. Coherent light emission from p-n junctions[J]. Solid-State Electronics, 1963, 6(5): 405-408.

    [3] Diehl R High-power diode lasers[M]. New York: Springer Berlin Heidelberg, 2000, 69.

    [4] Bachmann F. Industrial applications of high power diode lasers in materials processing[J]. Applied Surface Science, 2003, 208: 125-136.

    [5] Guo X Y. Development of semiconductor laser[J]. Laser Technology, 1987, 11(2): 1-6.

    [6] Alferov Z I, Kazarinov R F. Semiconductor laser with electric pumping[J]. Inventor′s Certificate, 1963, 181737.

    [7] Du Baoxun. Principle of semiconductor laser[M]. Tianjin: The Publishing House of Ordnance Industry, 2004: 62-65.

    [8] Alferov Z I, Gurevich S A, Kazarinov R F, et al. Semiconductor laser with extremely low divergence of radiation[J]. Soviet Physics: Semiconductors, 1974, 8: 832-833.

    [9] Soda H, Iga K, Kitahara C, et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 1979, 18(12): 2329-2330.

    [10] Hand C F. Novel 300 W single-emitter laser diodes for laser initiation applications[C]. SPIE, 2010, 7795: 779507.

    [11] Gao W, Xu Z, Cheng L, et al. High-power highly reliable single emitter laser diodes at 808 nm[C]. SPIE, 2007, 6456: 64560B.

    [12] Leisher P, Price K, Bashar S, et al. Mode control for high performance laser diode sources[C]. SPIE, 2008, 6952: 69520C.

    [13] Crump P, Blume G, Paschke K, et al. 20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 μm[C]. SPIE, 2009, 7198: 719814.

    [14] Braunstein J, Mikulla M, Kiefer R, et al. 267 W cw AlGaAs/GaInAs diode laser bars[J]. Proceedings of SPIE, 2000: 17-22.

    [15] Lichtenstein N, Manz Y, Mauron P, et al. 325 Watts from 1-cm wide 9xx laser bars for DPSSL and FL applications[J]. Proceedings of SPIE, 2005: 1-11.

    [16] Crump P, Wang J, Crum T, et al. 360 W and >70% efficient GaAs-based diode lasers[J]. Proceedings of SPIE, 2005: 21-29.

    [17] Lorenzen D, Schrder M, Meusel J, et al. Comparative performance studies of indium and gold-tin packaged diode laser bars[C]. SPIE, 2006, 4973: 30-41.

    [18] Li H X, Chyr I, Jin X, et al. >700 W continuous-wave output power from single laser diode bar[J]. Electronics Letters, 2007, 43(1): 27-28.

    [19] Li H, Chyr I, Brown D, et al. Ongoing development of high-efficiency and high-reliability laser diodes at Spectra-Physics[C]. SPIE, 2007, 6456: 64560C.

    [20] Schrder D, Meusei J, Hennig P, et al. Increased power of broad-area lasers (808 nm/980 nm) and applicability to 10-mm bars with up to 1000 Watt QCW[C]. SPIE, 2007, 6456: 64560N.

    [21] Li H, Reinhardt F, Chyr I, et al. High-efficiency, high-power diode laser chips, bars, and stacks[C]. SPIE, 2008, 6876: 68760G.

    [22] Knapczyk M T, Jacob J H, Eppich H, et al. 70% efficient near 1 kW single 1 cm laser-diode bar at 20 ℃[C]. SPIE, 2011, 7918: 79180F.

    [23] Zhou Minchao, Jiang Xianfeng, Zhang Lifang, et al. Optical performance of high power laser diode stack[J]. Chinese J Lasers, 2013, 40(12): 1202004.

    [24] Zhou Chongxi, LiuYinhui, Xie Weimin, et al. Analysis and design of fiber coupled high-power laser diode array[J]. Chinese J Lasers, 2004, 31(11): 1296-1300.

    [25] Laserline GmbH. Fraunhofer Strae 56218 Mülheim-Krlich[EB/OL]. [2017-03-07]https://www.laserline.de/en/diodelasers/ldfseries/technical-data.html.

    [26] Crump P, Dong W, Grimshaw, et al. 100-W+ diode laser bars show >71% power conversion from 790 nm to 1000-nm and have clear route to >85%[C]. SPIE, 2007, 6456: 64560M.

    [27] Pikhtin N A, Slipchenko S O, Sokolova Z N, et al. 16 W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure[J]. Electronics Letters, 2004, 40(22): 1413-1414.

    [28] Crump P, Grimshaw M, Wang J, et al. 85% power conversion efficiency 975 nm broad area diode lasers at 50 ℃, 76% at 10 ℃[C]. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, IEEE, 2006: JWB24.

    [29] Kanskar M, Earles T, Goodnough T J, et al. 73% CW power conversion efficiency at 50 W from 970 nm diode laser bars[J]. Electronics Letters, 2005, 41(5): 245-247.

    [30] Erbert G, Bugge F, Knigge A, et al. Highly reliable 75W InGaAs/AlGaAs laser bars with over 70% conversion efficiency[C]. SPIE, 2006, 6133: 61330B.

    [31] Kanskar M, Bai J G, Chen Z, et al. High efficiency kW-class QCW 88x nm diode laser bars[J]. Conference on Lasers and Electro Optics: Applications and Technology, 2013, JW1J: JW1J.1.

    [32] Crump P, Wenzel H, Erbert G, et al. Passively cooled TM polarized 808 nm laser bars with 70% power conversion at 80 W and 55 W peak power per 100 μm stripe width[J]. IEEE Photonics Technology Letters, 2008, 20(16): 1378-1380.

    [33] Hodges A, Wang J, Defranza M, et al. A CTE matched hard solder passively cooled laser diode package combined with nXLT facet passivation enables high power, high reliability operation[C]. SPIE, 2007, 6552: 65521E.

    [34] Rossin V, Peters M, Zucker E, et al. Highly reliable high-power broad area laser diodes[C]. SPIE, 2006, 6104: 610407.

    [35] Gao W, Xu Z, Mastrovito A. High-power highly reliable single emitter laser diodes at 808 nm[C]. SPIE, 2007, 6456: 64560B.

    [36] Xu Z, Gao W, Cheng L, et al. Highly reliable, high-brightness 915nm laser diodes for fiber laser applications[C]. SPIE, 2008, 6909: 69090Q.

    [37] Lorenzen D, Meusel J, Schrder D, et al. Passively cooled diode lasers in the cw power range of 120 to 200W[C]. SPIE, 2008, 6876: 68760Q.

    [38] Schrder D, Schrder M, Werner E, et al. Improved laser diode for high power and high temperature applications[C]. SPIE, 2009, 7198: 719809.

    [39] Gan Qijun, Jiang Benxue, Zhang Pande, et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010003.

    [40] Akiyama Y, Takada H, Yuasa H, et al. Efficient 10 kW diode-pumped Nd∶YAG rod laser[C]. Advanced Solid-State Lasers, 2002: WE4.

    [41] Bruesselbach H, Sumida D S. A 2.65 kW Yb∶YAG single-rod laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 600-603.

    [42] Bo Y, Geng A, Bi Y, et al. 1.15 kW continuous-wave generation by diode-side-pumped two-rod Nd∶YAG laser[J]. Chinese Physics, 2005, 14(4): 771-773.

    [47] Nishikawa Y. Slab-shaped 10 kW all-solid-state laser[J]. Review of Laser Engineering-Laser Society of Japan, 2003, 31(8): 513-518.

    [48] Goodno G, Komine H, Mcnaught H, et al. Multi-kW near-diffraction-limited single-frequency Nd∶YAG laser[C]. Lasers and Electro-Optics Europe, 2005: 25.

    [49] Goodno G D, Komine H, Mcnaught S J, et al. Coherent combination of high-power, zigzag slab lasers[J]. Optics Letters, 2006, 31(9): 1247-1249.

    [50] Redmond S, Mcnaught S, Zamel J, et al. 15 kW near-diffraction-limited single-frequency Nd∶YAG laser[C]. Lasers and Electro-Optics Europe, 2007: 1-2.

    [51] Yasuhara R, Kawashima T, Sekine T, et al. 213 W average power of 2.4 GW pulsed thermally controlled Nd∶glass zigzag slab laser with a stimulated Brillouin scattering mirror[J]. Optics Letters, 2008, 33(15): 1711-1713.

    [52] Mc Naught S J, Asman C P, Inheyan H, et al. 100 kW coherently combined Nd∶YAG MOPA laser array[C]. Frontiers in Optics, 2009, FThD: FThD2.

    [53] Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman[C]. SPIE, 2009, 7195: 719507.

    [54] Zhou Shouhuan, Zhao Hong, Tang Xiaojun. High average power laser diode pumped solid-state laser[J]. Chinese J Lasers, 2009, 36(7): 1605-1618.

    [55] Wang Chao, Tang Xiaojun, Xu Liujing, et al. Investigation on thermal effect of high power slab laser with 11 kW[J]. Chinese J Lasers, 2010, 37(11): 2807-2809.

    [56] Gong M, Li C, Liu Q, et al. 200 W corner-pumped Yb∶YAG slab laser[J]. Applied Physics B, 2004, 79(3): 265-267.

    [57] Liu Q, Gong M, Lu F, et al. 520 W continuous-wave diode corner-pumped composite Yb∶YAG slab laser[J]. Optics Letters, 2005, 30(7): 726-728.

    [58] Liu H, Gong M. Efficient corner-pumped Nd∶YAG/YAG composite slab laser[J]. Chinese Physics B, 2010, 18(5): 054209.

    [59] Peng Qinjun, Xu Zuyan. Relationship of beam quality and power for solid state laser with high average power[J]. High Power Laser and Particle Beams, 2011, 23(7): 1707-1712.

    [60] Gao Qingsong, Hu Hao, Pei Zhenping, et al. Design and experiment study of all-solid slab laser amplifier with laser power of 10 kW[J]. Chinese J Lasers, 2012, 39(2): 0202001.

    [61] Kelson I, Hardy A. Strongly pumped fiber lasers[J]. IEEE Journal of Quantum Electronics, 1998, 34(9): 1570-1577.

    [62] Fermann M E. Single-mode excitation of multimode fibers with ultrashort pulses[J]. Optics Letters, 1998, 23(1): 52-54.

    [63] Jeong Y, Sahu J K, Payne D, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.

    [64] Bonati G, Voelckel H, Gabler T, et al. 1.53 kW from a single Yb-doped photonic crystal fiber laser[J]. Photonics West, San Jose, Late Breaking Developments, 2005: 5709.

    [65] Ning Ding, Wang Wentao, Ruan Ling, et al. Fabrication and lasing properties of Yb3+-doped double-clad silica fiber[J]. Chinese J Lasers, 2000, 27(11): 987-991.

    [66] Zhou Jun, Lou Qihong, Zhu Jianqiang, et al. A continuous-wave 714 W fiber laser with China-made large-mode-area double-clad fiber[J]. Acta Optica Sinica, 2006, 26(7): 1119-1120.

    [68] Huo Y, Cheo P K, King G G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Optics Express, 2004, 12(25): 6230-6239.

    [69] Cheo P K. Recent advances in high-power and high-energy multicore fiber lasers[C]. SPIE, 2004, 5335: 106-115.

    [70] Michaille L, Bennett C R, Taylor D M, et al. Multi-core photonic crystal fibers for high-power lasers and amplifiers[C]. SPIE, 2006, 6102: 61020W.

    [71] Shay T M, Baker J T, Robin C A, et al. High-power phase locking of a fiber amplifier array[C]. SPIE, 2009, 7195: 71951M.

    [72] Krupke W F, Beach R J, Kanz V K, et al. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 2003, 28(23): 2336-2338.

    [73] Page R H, Beach R J, Kanz V K, et al. Multimode-diode-pumped gas (alkali-vapor) laser[J]. Optics Letters, 2005, 31(3): 353-355.

    CLP Journals

    [1] Zhu Zhen, Xiao Chengfeng, Xia Wei, Zhang Xin, Su Jian, Li Peixu, Xu Xiangang. Design and Fabrication of High Power 640 nm Red Laser Diodes[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81403