• Laser & Optoelectronics Progress
  • Vol. 56, Issue 8, 082701 (2019)
Kang Cheng, Yuanyuan Zhou*, and Huan Wang
Author Affiliations
  • School of Electronic Engineering, Naval University of Engineering, Wuhan, Hubei 430033, China
  • show less
    DOI: 10.3788/LOP56.082701 Cite this Article Set citation alerts
    Kang Cheng, Yuanyuan Zhou, Huan Wang. Scheme of Measurement-Device-Independent Classical-Quantum Signal Transmission in Shared Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(8): 082701 Copy Citation Text show less
    References

    [1] Wang L J, Zou K H, Sun W et al. Long distance co-propagation of quantum key distribution and terabit classical optical data channels[J]. Physical Review A, 95, 012301(2017). http://arxiv.org/abs/1610.04475

    [2] Mao Y Q, Wang B X, Zhao C X et al. Integrating quantum key distribution with classical communications in backbone fiber network[J]. Optics Express, 26, 6010(2018). http://www.onacademic.com/detail/journal_1000040493614910_9c12.html

    [3] Luo J W, Li Y X, Shi L et al. Co-fiber-transmission technology for quantum signal and classical optical signal based on mode division multiplexing in few-mode fiber[J]. Laser & Optoelectronics Progress, 54, 022702(2017).

    [4] Luo J W, Li Y X, Meng W et al. Quantum private communication system based on wavelength-mode division co-multiplexing[J]. Acta Optica Sinica, 37, 0927001(2017).

    [5] Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fiber using wavelength-division multiplexing[J]. Electronics Letters, 33, 188-190(1997). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=575910

    [6] Nweke N I, Toliver P, Runser R J et al. Experimental characterization of the separation between wavelength: multiplexed quantum and classical communication channels[J]. Applied Physics Letters, 87, 174103(2005). http://scitation.aip.org/content/aip/journal/apl/87/17/10.1063/1.2117616

    [7] Chapuran T E, Toliver P, Peter N A et al. Optical networking for quantum key distribution and quantum communications[J]. New Journal of Physics, 11, 105001(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000009000011000016000001&idtype=cvips&gifs=Yes

    [8] Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states[J]. Physical Review Letters, 88, 057902(2002). http://europepmc.org/abstract/MED/11863782

    [9] Scarani V, Acín A, Ribordy G et al. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations[J]. Physical Review Letters, 92, 057901(2004). http://europepmc.org/abstract/MED/14995344

    [10] Ma X F, Qi B, Zhao Y et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 72, 012326(2005). http://arxiv.org/abs/quant-ph/0503021

    [11] Tamaki K, Lo H K. Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Physical Review A, 85, 042307(2012).

    [12] Yin H L, Chen T Y, Yu Z W et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 117, 190501(2016).

    [13] Peng C Z, Pan J W. Quantum science experimental satellite “Micius”[J]. Bulletin of Chinese Academy of Sciences, 31, 1096-1104(2016).

    [14] Poppe A, Peev M, Maurhart O. Outline of the SECOQC quantum-key-distribution network in vienna[J]. International Journal of Quantum Information, 6, 209-218(2008). http://www.worldscientific.com/doi/abs/10.1142/S0219749908003529

    [15] Chen G, Zhang L J, Zhang W H et al. Achieving Heisenberg-scaling precision with projective measurement on single photons[J]. Physical Review Letters, 121, 060506(2018). http://arxiv.org/abs/1808.02683

    [16] Hwang W Y. Quantum key distribution with high loss: Toward global secure communication[J]. Physical Review Letters, 91, 057901(2003). http://europepmc.org/abstract/MED/12906634

    [17] Sun Y, Zhao S H, Dong C. Measurement device independent quantum key distribution network based on quantum memory and entangled photon sources[J]. Acta Optica Sinica, 36, 0327001(2016).

    [18] Tang Y L, Yin H L, Chen S J et al. Publisher's note: Measurement-device-independent quantum key distribution over 200 km[J]. Physical Review Letters, 114, 069901(2015).

    [19] Ma X F, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution[J]. Physical Review A, 86, 062319(2012). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.062319

    [20] Mao Q P, Zhao S M, Wang L et al. Measurement-device-independent quantum key distribution based on wavelength division multiplexing technology[J]. Chinese Journal of Quantum Electronics, 34, 46-53(2017).

    [21] Agrawal G P, Agrawal G P[M]. 光学与光电子学: 光纤通信系统, 60(2016).

         [M]. Fiber-optic communication systems, 60(2016).

    [22] Aleksic S, Hipp F, Winkler D et al. Perspectives and limitations of QKD integration in metropolitan area networks[J]. Optics Express, 23, 10359(2015). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-8-10359

    [23] Wang L J. Experimental study of multiplexing quantum key distribution and classical optical communications[D]. Hefei: University of Science and Technology of China(2016).

    [24] Wang Y S, Li Y X, Shi L et al. The analysis of the noise in multiplexed classical and quantum transmission system based on DWDM[J]. Acta Sinica Quantum Optica, 20, 296-301(2014).

    [25] Zhu F, Zhang C H, Liu A P et al. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources[J]. Physics Letters A, 380, 1408-1413(2016). http://www.sciencedirect.com/science/article/pii/S0375960116001675

    Kang Cheng, Yuanyuan Zhou, Huan Wang. Scheme of Measurement-Device-Independent Classical-Quantum Signal Transmission in Shared Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(8): 082701
    Download Citation