• Laser & Optoelectronics Progress
  • Vol. 58, Issue 24, 2400006 (2021)
Zhibing Xu, Wenxia Zhou, Dongdong Xu, Xiao Wang, Jianhua Yin, and Huijie Wang*
Author Affiliations
  • Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211106, China
  • show less
    DOI: 10.3788/LOP202158.2400006 Cite this Article Set citation alerts
    Zhibing Xu, Wenxia Zhou, Dongdong Xu, Xiao Wang, Jianhua Yin, Huijie Wang. Research Progress of Fluorescence Polarization Modulation Microscopy Imaging Technology[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2400006 Copy Citation Text show less
    References

    [1] Herschel J F W. No. I.: on a case of superficial colour presented by a homogeneous liquid internally colourless[J]. Philosophical Transactions of the Royal Society of London, 135, 143-145(1845).

    [2] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [3] Hell S W. Microscopy and its focal switch[J]. Nature Methods, 6, 24-32(2009).

    [4] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [5] Fu Y, Wang T L, Zhao S. Imaging principles and applications of super-resolution optical microscopy[J]. Laser & Optoelectronics Progress, 56, 240002(2019).

    [6] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-795(2006).

    [7] Pan W H, Chen B L, Zhang J G et al. Compressed sensing STORM super-resolution image reconstruction based on noise correction-principal component analysis preprocessing algorithm[J]. Chinese Journal of Lasers, 47, 0207024(2020).

    [8] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [9] Kner P, Chhun B B, Griffis E R et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 6, 339-342(2009).

    [10] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).

    [11] Zhao T Y, Wang Z J, Feng K et al. High-speed structured illumination microscopy and its applications[J]. Laser & Optoelectronics Progress, 57, 240001(2020).

    [12] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-468(1873).

    [13] Liu X B, Lin D Y, Wu Q Q et al. Recent progress of fluorescence lifetime imaging microscopy technology and its application[J]. Acta Physica Sinica, 67, 178701(2018).

    [14] Liu C, Zhou Y, Wang X W et al. Fluorescence lifetime imaging microscopy and its research progress[J]. Laser & Optoelectronics Progress, 48, 111102(2011).

    [15] Levchenko S M, Pliss A, Qu J L. Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes[J]. Journal of Innovative Optical Health Sciences, 11, 1730009(2018).

    [16] Liu L X, Qu J L, Lin Z Y et al. Fluorescence lifetime imaging and its biomedical applications[J]. Shenzhen University Journal, 22, 133-141(2005).

    [17] Qu J L, Niu H B, Guo B P. Fluorescence lifetime imaging microscopy[J]. Applied Laser, 17, 100-104(1997).

    [18] Valeur B. Molecular fluorescence: principles and applications[M](2001).

    [19] Fooksman D R, Edidin M, Barisas B G. Measuring rotational diffusion of MHC class I on live cells by polarized FPR[J]. Biophysical Chemistry, 130, 10-16(2007).

    [20] Sun Y, Sato O, Ruhnow F et al. Single-molecule stepping and structural dynamics of myosin X[J]. Nature Structural & Molecular Biology, 17, 485-491(2010).

    [21] Shroder D Y, Lippert L G, Goldman Y E. Single molecule optical measurements of orientation and rotations of biological macromolecules[J]. Methods and Applications in Fluorescence, 4, 042004(2016).

    [22] Forkey J N, Quinlan M E, Alexander Shaw M et al. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization[J]. Nature, 422, 399-404(2003).

    [23] Sun Y J, Schroeder H W III, Beausang J F III et al. Myosin VI walks “wiggly” on actin with large and variable tilting[J]. Molecular Cell, 28, 954-964(2007).

    [24] Lazar J, Lazar J, Bondar A et al. Two-photon polarization microscopy reveals protein structure and function[J]. Nature Methods, 8, 684-690(2011).

    [25] Duboisset J, Ferrand P, He W et al. Thioflavine-T and Congo red reveal the polymorphism of insulin amyloid fibrils when probed by polarization-resolved fluorescence microscopy[J]. The Journal of Physical Chemistry B, 117, 784-788(2013).

    [26] Ferrand P, Gasecka P, Kress A et al. Ultimate use of two-photon fluorescence microscopy to map orientational behavior of fluorophores[J]. Biophysical Journal, 106, 2330-2339(2014).

    [27] Benninger R K, Onfelt B, Neil M A A et al. Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes[J]. Biophysical Journal, 88, 609-622(2005).

    [28] Gasecka A, Han T J, Favard C et al. Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry[J]. Biophysical Journal, 97, 2854-2862(2009).

    [29] Li W, Wang Y, Shao H et al. Probing rotation dynamics of biomolecules using polarization based fluorescence microscopy[J]. Microscopy Research and Technique, 70, 390-395(2007).

    [30] Vrabioiu A M, Mitchison T J. Structural insights into yeast septin organization from polarized fluorescence microscopy[J]. Nature, 443, 466-469(2006).

    [31] Kress A, Wang X, Ranchon H et al. Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy[J]. Biophysical Journal, 105, 127-136(2013).

    [32] Wang X, Kress A, Brasselet S et al. High frame-rate fluorescence confocal angle-resolved linear dichroism microscopy[J]. Review of Scientific Instruments, 84, 053708(2013).

    [33] Hafi N, Grunwald M, van den Heuvel L S et al. Fluorescence nanoscopy by polarization modulation and polarization angle narrowing[J]. Nature Methods, 11, 579-584(2014).

    [34] Zhanghao K, Chen L, Yang X S et al. Super-resolution dipole orientation mapping via polarization demodulation[J]. Light: Science & Applications, 5, e16166(2016).

    [35] Zhanghao K, Chen X, Liu W et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy[J]. Nature Communications, 10, 4694(2019).

    [36] Valades Cruz C A, Shaban H A, Kress A et al. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, E820-E828(2016).

    [37] Backer A S, Lee M Y, Moerner W E. Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements[J]. Optica, 3, 659-666(2016).

    [38] Sigal Y M, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).

    [39] Jabłoński A. Über den Mechanismus der Photolumineszenz von Farbstoffphosphoren[J]. Zeitschrift Für Physik, 94, 38-46(1935).

    [40] Lakowicz J R. Principles of fluorescence spectroscopy[M](2006).

    [41] Borejdo J, Burlacu S. Orientation of actin filaments during motion in in vitro motility assay[J]. Biophysical Journal, 66, 1319-1327(1994).

    [42] Bidault S. Manipulation optique de l’organisation de chromophores non-linéaires et luminescents[D](2004).

    [43] Weber G. Rotational Brownian motion and polarization of the fluorescence of solutions[J]. Advances in Protein Chemistry, 8, 415-459(1953).

    [44] Kinosita K, Itoh H, Ishiwata S et al. Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium[J]. The Journal of Cell Biology, 115, 67-73(1991).

    [45] Forkey J N, Quinlan M E, Goldman Y E. Protein structural dynamics by single-molecule fluorescence polarization[J]. Progress in Biophysics and Molecular Biology, 74, 1-35(2000).

    [46] Florine-Casteel K. Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy[J]. Biophysical Journal, 57, 1199-1215(1990).

    [47] Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization[J]. Biophysical Journal, 26, 557-573(1979).

    [48] Velez M, Axelrod D. Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes[J]. Biophysical Journal, 53, 575-591(1988).

    [49] Mehta S B, McQuilken M, la Riviere P J et al. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells[J]. Proceedings of the National Academy of Sciences USA, 113, E6352-E6361(2016).

    [50] Abrahamsson S, McQuilken M, Mehta S B et al. MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously[J]. Optics Express, 23, 7734-7754(2015).

    [51] DeMay B S, Bai X, Howard L et al. Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals[J]. The Journal of Cell Biology, 193, 1065-1081(2011).

    [52] DeMay B S, Noda N, Gladfelter A S et al. Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast[J]. Biophysical Journal, 101, 985-994(2011).

    [53] Dubach J M, Vinegoni C, Mazitschek R et al. In vivo imaging of specific drug-target binding at subcellular resolution[J]. Nature Communications, 5, 3946(2014).

    [54] Vinegoni C, Dubach J M, Feruglio P F et al. Two-photon fluorescence anisotropy microscopy for imaging and direct measurement of intracellular drug target engagement[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 179-185(2016).

    [55] Frahm L, Keller J. Polarization modulation adds little additional information to super-resolution fluorescence microscopy[J]. Nature Methods, 13, 7-8(2016).

    [56] Hafi N, Grunwald M, van den Heuvel L S et al. Reply to “polarization modulation adds little additional information to super-resolution fluorescence microscopy”[J]. Nature Methods, 13, 8-9(2016).

    [57] Wazawa T, Arai Y, Kawahara Y et al. Highly biocompatible super-resolution fluorescence imaging using the fast photoswitching fluorescent protein Kohinoor and SPoD-ExPAN with Lp-regularized image reconstruction[J]. Microscopy, 67, 89-98(2018).

    [58] Chen L, Wang M Y, Zhang X et al. Group-sparsity-based super-resolution dipole orientation mapping[J]. IEEE Transactions on Medical Imaging, 38, 2687-2694(2019).

    [59] Wang X, Zhang Y X, Zhou W X et al. Mapping the dipole orientation distribution within a super-resolution scale via fluorescence polarization modulation[J]. Journal of the Optical Society of America A, 37, 353-360(2020).

    [60] Camacho R, Täuber D, Scheblykin I G. Fluorescence anisotropy reloaded: emerging polarization microscopy methods for assessing chromophores’ organization and excitation energy transfer in single molecules, particles, films, and beyond[J]. Advanced Materials, 31, 1805671(2019).

    [61] Chandler T, Shroff H, Oldenbourg R et al. Spatio-angular fluorescence microscopy I basic theory[J]. Journal of the Optical Society of America A, 36, 1334-1345(2019).

    [62] Zheng C, Zhao G Y, Kuang C F et al. 3D point scanning super-resolution microscopy via polarization modulation[J]. Optics Letters, 42, 3734-3737(2017).

    [63] Zheng C, Zhao G Y, Liu W F et al. 3D super-resolved multiangle TIRF via polarization modulation[EB/OL]. (2018-01-03)[2020-1210]. https://arxiv.org/abs/1801.00882

    [64] Backer A S, Biebricher A S, King G A et al. Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA[J]. Science Advances, 5, eaav1083(2019).

    [65] Artigas D, Merino D, Polzer C et al. Sub-diffraction discrimination with polarization-resolved two-photon excited fluorescence microscopy[J]. Optica, 4, 911-918(2017).

    [66] Vinegoni C, Weissieder R, Dubach M et al. System and method for determination of ligand-target binding by multi-photon fluorescence anisotropy microscopy: US20170045521[P](2017).

    Zhibing Xu, Wenxia Zhou, Dongdong Xu, Xiao Wang, Jianhua Yin, Huijie Wang. Research Progress of Fluorescence Polarization Modulation Microscopy Imaging Technology[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2400006
    Download Citation