• High Power Laser Science and Engineering
  • Vol. 11, Issue 3, 03000e37 (2023)
Y. X. Wang1、2, S. M. Weng1、2、*, P. Li3、*, Z. C. Shen3, X. Y. Jiang1、2, J. Huang1、2, X. L. Zhu1、2, H. H. Ma1、2, X. B. Zhang1、2、4, X. F. Li1、2, Z. M. Sheng1、2、5、*, and J. Zhang1、2、5
Author Affiliations
  • 1Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
  • 2Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China
  • 3Research Center of Laser Fusion of China Academy of Engineering Physics, Mianyang, China
  • 4College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou, China
  • 5Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
  • show less
    DOI: 10.1017/hpl.2023.19 Cite this Article Set citation alerts
    Y. X. Wang, S. M. Weng, P. Li, Z. C. Shen, X. Y. Jiang, J. Huang, X. L. Zhu, H. H. Ma, X. B. Zhang, X. F. Li, Z. M. Sheng, J. Zhang. Depolarization of intense laser beams by dynamic plasma density gratings[J]. High Power Laser Science and Engineering, 2023, 11(3): 03000e37 Copy Citation Text show less

    Abstract

    As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
    $$\begin{align}\boldsymbol{a}={a}_1\cos \left({k}_1y-{\omega}_1t\right)\;{\boldsymbol{e}}_x+{a}_2\cos \left({k}_2y+{\omega}_2t\right)\;{\boldsymbol{e}}_x.\end{align}$$ ((1))

    View in Article

    $$\begin{align} \begin{array}{l}{\boldsymbol{F}}_{\mathrm{p}}={m}_{\mathrm{e}}{c}^2{a}_1{a}_2{k}_1\sin \left(2{k}_1y\right)\;{\boldsymbol{e}}_y.\end{array}\end{align}$$ ((2))

    View in Article

    $$\begin{align}\delta {n}_{\mathrm{e}}=-\left(2{k}^2{c}^2/{\omega}_{\mathrm{p}}^2\right){a}_1{a}_2\cos \left(2{k}_1y\right)\left[1-\cos \left({\omega}_{\mathrm{p}}t\right)\right],\end{align}$$ ((3))

    View in Article

    $$\begin{align} \begin{array}{l}\cos (kl)=\cos \left({k}_{\mathrm{h}}{l}_{\mathrm{h}}\right)\cos \left({k}_{\mathrm{l}}{l}_{\mathrm{l}}\right)\\[4pt] {}\kern4em -\dfrac{1}{2}\left(\dfrac{k_{\mathrm{l}}}{k_{\mathrm{h}}}+\dfrac{k_{\mathrm{h}}}{k_{\mathrm{l}}}\right)\sin \left({k}_{\mathrm{h}}{l}_{\mathrm{h}}\right)\sin \left({k}_{\mathrm{l}}{l}_{\mathrm{l}}\right),\end{array}\end{align}$$ ((4))

    View in Article

    $$\begin{align} \begin{array}{l}\cos (kl)=\cos \left({k}_{\mathrm{h}}{l}_{\mathrm{h}}\right)\cos \left({k}_{\mathrm{l}}{l}_{\mathrm{l}}\right)\\[4pt] {}\kern4em -\dfrac{1}{2}\left(\dfrac{n_{\mathrm{l}}^2{k}_{\mathrm{l}}}{n_{\mathrm{h}}^2{k}_{\mathrm{h}}}+\dfrac{n_{\mathrm{h}}^2{k}_{\mathrm{h}}}{n_{\mathrm{l}}^2{k}_{\mathrm{l}}}\right)\sin \left({k}_{\mathrm{h}}{l}_{\mathrm{h}}\right)\sin \left({k}_{\mathrm{l}}{l}_{\mathrm{l}}\right),\end{array}\end{align}$$ ((5))

    View in Article

    $$\begin{align} \begin{array}{l}\Delta \phi ={\int}_0^lk\frac{v_{{\mathrm{TM}}}(x)-{v}_{{\mathrm{TE}}}(x)}{v_{{\mathrm{TE}}}(x)} \mathrm{d}l.\end{array}\end{align}$$ ((6))

    View in Article

    $$\begin{align*}{P}_{{\mathrm{t}},{\mathrm{l}}}=\sqrt{{\left\langle Q\right\rangle}_{{\mathrm{l}},{\mathrm{t}}}^2+{\left\langle U\right\rangle}_{{\mathrm{l}},{\mathrm{t}}}^2+{\left\langle V\right\rangle}_{{\mathrm{l}},{\mathrm{t}}}^2}/{\left\langle I\right\rangle}_{{\mathrm{l}},{\mathrm{t}}}\end{align*}$$ ()

    View in Article

    $$\begin{align} {\mathit{\boldsymbol a}}_1\cdot {\mathit{\boldsymbol a}}_2&=\dfrac{a_1{a}_2\cos \varphi }{2}\Big[\cos \left(2\omega t-2 kx\cos \dfrac{\varphi }{2}\right)\nonumber\\[8pt] &\quad +\cos \left(2 ky\sin \dfrac{\varphi }{2}\right)\Big], \end{align}$$ ((7))

    View in Article

    Y. X. Wang, S. M. Weng, P. Li, Z. C. Shen, X. Y. Jiang, J. Huang, X. L. Zhu, H. H. Ma, X. B. Zhang, X. F. Li, Z. M. Sheng, J. Zhang. Depolarization of intense laser beams by dynamic plasma density gratings[J]. High Power Laser Science and Engineering, 2023, 11(3): 03000e37
    Download Citation