• Laser & Optoelectronics Progress
  • Vol. 58, Issue 22, 2200001 (2021)
Xiao Wang1、†, Shijie Tu1、†, Xin Liu1, Yuehan Zhao1, Cuifang Kuang1、2、3, Xu Liu1、3, and Xiang Hao1、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 2Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
  • 3Zhejiang Lab, Hangzhou, Zhejiang 311121, China
  • show less
    DOI: 10.3788/LOP202158.2200001 Cite this Article Set citation alerts
    Xiao Wang, Shijie Tu, Xin Liu, Yuehan Zhao, Cuifang Kuang, Xu Liu, Xiang Hao. Advance and Prospect for Three-Dimensional Super-Resolution Microscopy[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2200001 Copy Citation Text show less
    References

    [1] Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-468(1873).

    [2] Huang B, Jones S A, Brandenburg B et al. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution[J]. Nature Methods, 5, 1047-1052(2008).

    [3] Hao X, Yang Q, Kuang C F et al. Opticalsuper-resolution imaging based on frequency shift[J]. Acta Optica Sinica, 41, 0111001(2021).

    [4] Chen Y C, Li C K, Hao X et al. Progress of point scanning super-resolution microscopy based on frequency shifting[J]. Laser & Optoelectronics Progress, 57, 180001(2020).

    [5] Hao X, Li Y M, Fu S et al. Review of 4Pi fluorescence nanoscopy[EB/OL]. (2020-12-09)[2021-05-28]. https://www.sciencedirect.com/science/article/pii/S2095809920303647

    [6] Heintzmann R, Gustafsson M G L. Subdiffraction resolution in continuous samples[J]. Nature Photonics, 3, 362-364(2009).

    [7] Hell S W, Schmidt R, Egner A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses[J]. Nature Photonics, 3, 381-387(2009).

    [8] Zhuang X W. Nano-imaging with STORM[J]. Nature Photonics, 3, 365-367(2009).

    [9] Zhao T Y, Wang Z J, Feng K et al. High-speed structured illumination microscopy and its applications[J]. Laser & Optoelectronics Progress, 57, 240001(2020).

    [10] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of USA, 97, 8206-8210(2000).

    [11] Harke B, Ullal C K, Keller J et al. Three-dimensional nanoscopy of colloidal crystals[J]. Nano Letters, 8, 1309-1313(2008).

    [12] Gould T J, Burke D, Bewersdorf J et al. Adaptive optics enables 3D STED microscopy in aberrating specimens[J]. Optics Express, 20, 20998-21009(2012).

    [13] Lenz M O, Sinclair H G, Savell A et al. 3-D stimulated emission depletion microscopy with programmable aberration correction[J]. Journal of Biophotonics, 7, 29-36(2014).

    [14] Wildanger D, Medda R, Kastrup L et al. A compact STED microscope providing 3D nanoscale resolution[J]. Journal of Microscopy, 236, 35-43(2009).

    [15] Heine J, Wurm C A, Keller-Findeisen J et al. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective[J]. The Review of Scientific Instruments, 89, 053701(2018).

    [16] Gould T J, Kromann E B, Burke D et al. Auto-aligning stimulated emission depletion microscope using adaptive optics[J]. Optics Letters, 38, 1860-1862(2013).

    [17] Hell S, Stelzer E H K. Properties of a 4Pi confocal fluorescence microscope[J]. Journal of the Optical Society of America A, 9, 2159-2166(1992).

    [18] Dyba M, Hell S W. Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution[J]. Physical Review Letters, 88, 163901(2002).

    [19] Schmidt R, Wurm C A, Jakobs S et al. Spherical nanosized focal spot unravels the interior of cells[J]. Nature Methods, 5, 539-544(2008).

    [20] Hao X, Allgeyer E S, Lee D-R et al. Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution[J]. Nature Methods, 18, 688-693(2021).

    [21] Hao X, Allgeyer E S, Booth M J et al. Point-spread function optimization in isoSTED nanoscopy[J]. Optics Letters, 40, 3627-3630(2015).

    [22] Booth M J. Adaptive optical microscopy:the ongoing quest for a perfect image[J]. Light: Science & Applications, 3, e165(2014).

    [23] Yang X S, Xie H, Alonas E et al. Mirror-enhanced super-resolution microscopy[J]. Light: Science & Applications, 5, e16134(2016).

    [24] Chen F, Tillberg P W, Boyden E S. Expansion microscopy[J]. Science, 347, 543-548(2015).

    [25] Gao M, Maraspini R, Beutel O et al. Expansion stimulated emission depletion microscopy (ExSTED)[J]. ACS Nano, 12, 4178-4185(2018).

    [26] Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy[J]. Nature Methods, 15, 173-182(2018).

    [27] Hell S, Reiner G, Cremer C et al. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index[J]. Journal of Microscopy, 169, 391-405(1993).

    [28] Urban N T, Willig K I, Hell S W et al. STED nanoscopy of actin dynamics in synapses deep inside living brain slices[J]. Biophysical Journal, 101, 1277-1284(2011).

    [29] Zhu X, Huang L, Zheng Y et al. Ultrafast optical clearing method for three-dimensional imaging with cellular resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 11480-11489(2019).

    [30] Unnersjö-Jess D, Scott L, Blom H et al. Super-resolution stimulated emission depletion imaging of slit diaphragm proteins in optically cleared kidney tissue[J]. Kidney International, 89, 243-247(2016).

    [31] Angibaud J, Mascalchi P, Poujol C et al. A simple tissue clearing method for increasing the depth penetration of STED microscopy of fixed brain slices[J]. Journal of Physics D: Applied Physics, 53, 184001(2020).

    [32] Velasco M G M, Zhang M, Antonello J et al. 3D super-resolution deep-tissue imaging in living mice[J]. Optica, 8, 442-450(2021).

    [33] Wang K, Milkie D E, Saxena A et al. Rapid adaptive optical recovery of optimal resolution over large volumes[J]. Nature Methods, 11, 625-628(2014).

    [34] Aviles-Espinosa R, Andilla J, Porcar-Guezenec R et al. Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy[J]. Biomedical Optics Express, 2, 3135-3149(2011).

    [35] Patton B R, Burke D, Owald D et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics[J]. Optics Express, 24, 8862-8876(2016).

    [36] Yan W, Yang Y L, Tan Y et al. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples[J]. Photonics Research, 5, 176-181(2017).

    [37] Zdankowski P, McGloin D, Swedlow J R. Full volume super-resolution imaging of thick mitotic spindle using 3D AO STED microscope[J]. Biomedical Optics Express, 10, 1999-2009(2019).

    [38] Antonello J, Barbotin A, Chong E Z et al. Multi-scale sensorless adaptive optics:application to stimulated emission depletion microscopy[J]. Optics Express, 28, 16749-16763(2020).

    [39] Zdańkowski P, Trusiak M, McGloin D et al. Numerically enhanced stimulated emission depletion microscopy with adaptive optics for deep-tissue super-resolved imaging[J]. ACS Nano, 14, 394-405(2020).

    [40] Kromann E B, Gould T J, Juette M F et al. Quantitative pupil analysis in stimulated emission depletion microscopy using phase retrieval[J]. Optics Letters, 37, 1805-1807(2012).

    [41] Yu W T, Ji Z H, Dong D S et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 10, 147-152(2016).

    [42] Speidel M, Jonáš A, Florin E L. Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging[J]. Optics Letters, 28, 69-71(2003).

    [43] Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 78, 993-1016(2009).

    [44] Greengard A, Schechner Y Y, Piestun R. Depth from diffracted rotation[J]. Optics Letters, 31, 181-183(2006).

    [45] Ram S, Prabhat P, Chao J et al. Localizing single molecules in three dimensions: a brief review[C]. //2008 42nd Asilomar Conference on Signals, Systems and Computers, October 26-29, 2008, Pacific Grove, CA, USA, 64-66(2008).

    [46] Patterson G, Davidson M, Manley S et al. Superresolution imaging using single-molecule localization[J]. Annual Review of Physical Chemistry, 61, 345-367(2010).

    [47] Hajj B, El Beheiry M, Izeddin I et al. Accessing the third dimension in localization-based super-resolution microscopy[J]. Physical Chemistry Chemical Physics, 16, 16340-16348(2014).

    [48] von Diezmann L, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking[J]. Chemical Reviews, 117, 7244-7275(2017).

    [49] Liu W J, Toussaint K C, Okoro C et al. Breaking the axial diffraction limit: a guide to axial super-resolution fluorescence microscopy[J]. Laser & Photonics Reviews, 12, 1700333(2018).

    [50] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).

    [51] Zhou Y Z, Handley M, Carles G et al. Advances in 3D single particle localization microscopy[J]. APL Photonics, 4, 060901(2019).

    [52] Liu S, Huh H, Lee S H et al. Three-dimensional single-molecule localization microscopy in whole-cell and tissue specimens[J]. Annual Review of Biomedical Engineering, 22, 155-184(2020).

    [53] Liu S, Lidke K A. A multiemitter localization comparison of 3D superresolution imaging modalities[J]. Chemphyschem, 15, 696-704(2014).

    [54] Kao H P, Verkman A S. Tracking of single fluorescent particles in three dimensions:use of cylindrical optics to encode particle position[J]. Biophysical Journal, 67, 1291-1300(1994).

    [55] Huang B, Wang W Q, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).

    [56] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [57] Bates M, Huang B, Dempsey G T et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 317, 1749-1753(2007).

    [58] Izeddin I, Beheiry M E, Andilla J et al. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking[J]. Optics Express, 20, 4957-4967(2012).

    [59] Xu K, Babcock H P, Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 9, 185-188(2012).

    [60] Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M et al. Live-cell 3D super-resolution imaging in thick biological samples[J]. Nature Methods, 8, 1047-1049(2011).

    [61] Wäldchen F, Schlegel J, Götz R et al. Whole-cell imaging of plasma membrane receptors by 3D lattice light-sheet dSTORM[J]. Nature Communications, 11, 887(2020).

    [62] Bon P, Linarès-Loyez J, Feyeux M et al. Self-interference 3D super-resolution microscopy for deep tissue investigations[J]. Nature Methods, 15, 449-454(2018).

    [63] Linarès-Loyez J, Ferreira J S, Rossier O et al. Self-interference (SELFI) microscopy for live super-resolution imaging and single particle tracking in 3D[J]. Frontiers in Physics, 7, 68(2019).

    [64] Pavani S R, Thompson M A, Biteen J S et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 2995-2999(2009).

    [65] Pavani S R P, Piestun R. Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system[J]. Optics Express, 16, 22048-22057(2008).

    [66] Agrawal A, Colomb W, Gaumer S. High precision 3D single molecule microscopy using the double helix point spread function[J]. Microscopy and Microanalysis, 26, 1586-1589(2020).

    [67] Yoon J, Comerci C J, Weiss L E et al. Revealing nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy[J]. Biophysical Journal, 116, 319-329(2019).

    [68] Gahlmann A, Ptacin J L, Grover G et al. Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions[J]. Nano Letters, 13, 987-993(2013).

    [69] Baddeley D, Cannell M B, Soeller C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil[J]. Nano Research, 4, 589-598(2011).

    [70] Lew M D, Lee S F, Badieirostami M et al. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects[J]. Optics Letters, 36, 202-204(2011).

    [71] Jia S, Vaughan J C, Zhuang X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function[J]. Nature Photonics, 8, 302-306(2014).

    [72] Shechtman Y, Sahl S J, Backer A S et al. Optimal point spread function design for 3D imaging[J]. Physical Review Letters, 113, 133902(2014).

    [73] Shechtman Y, Weiss L E, Backer A S et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions[J]. Nano Letters, 15, 4194-4199(2015).

    [74] Backer A S, Backlund M P, von Diezmann A R et al. A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy[J]. Applied Physics Letters, 104, 193701(2014).

    [75] Zhou Y Z, Zammit P, Carles G et al. Computational localization microscopy with extended axial range[J]. Optics Express, 26, 7563-7577(2018).

    [76] Zhou Y Z, Zammit P, Zickus V et al. Twin-Airy point-spread function for extended-volume particle localization[J]. Physical Review Letters, 124, 198104(2020).

    [77] Zhou Y Z, Zickus V, Zammit P et al. High-speed extended-volume blood flow measurement using engineered point-spread function[J]. Biomedical Optics Express, 9, 6444-6454(2018).

    [78] Pan L T, Hu F, Zhang X Z et al. Multicolor single-molecule localization super-resolution microscopy[J]. Acta Optica Sinica, 37, 0318010(2017).

    [79] Nehme E, Freedman D, Gordon R et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning[J]. Nature Methods, 17, 734-740(2020).

    [80] Li Y, Mund M, Hoess P et al. Real-time 3D single-molecule localization using experimental point spread functions[J]. Nature Methods, 15, 367-369(2018).

    [81] Prabhat P, Ram S, Ward E S et al. Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions[J]. IEEE Transactions on NanoBioscience, 3, 237-242(2004).

    [82] Ram S, Prabhat P, Chao J et al. High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells[J]. Biophysical Journal, 95, 6025-6043(2008).

    [83] Ram S, Chao J, Prabhat P et al. A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking[J]. Proceedings of SPIE, 6443, 64430D(2007).

    [84] Ram S, Prabhat P, Ward E S et al. Improved single particle localization accuracy with dual objective multifocal plane microscopy[J]. Optics Express, 17, 6881-6898(2009).

    [85] Ram S, Kim D, OberR J et al. 3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers[J]. Biophysical Journal, 103, 1594-1603(2012).

    [86] Juette M F, Gould T J, Lessard M D et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples[J]. Nature Methods, 5, 527-529(2008).

    [87] Mlodzianoski M J, Schreiner J M, Callahan S P et al. Sample drift correction in 3D fluorescence photoactivation localization microscopy[J]. Optics Express, 19, 15009-15019(2011).

    [88] Ries J, Kaplan C, Platonova E et al. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies[J]. Nature Methods, 9, 582-584(2012).

    [89] Blanchard P M, Greenaway A H. Simultaneous multiplane imaging with a distorted diffraction grating[J]. Applied Optics, 38, 6692-6699(1999).

    [90] Abrahamsson S, Chen J, Hajj B et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy[J]. Nature Methods, 10, 60-63(2013).

    [91] Hajj B, Wisniewski J, El Beheiry M et al. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy[J]. Proceedings of the National Academy of Sciences of the USA, 111, 17480-17485(2014).

    [92] Hajj B, Oudjedi L, Fiche J B et al. Highly efficient multicolor multifocus microscopy by optimal design of diffraction binary gratings[J]. Scientific Reports, 7, 5284(2017).

    [93] Mait J N. Understanding diffractive optic design in the scalar domain[J]. Journal of the Optical Society of America A, 12, 2145-2158(1995).

    [94] Abrahamsson S, McQuilken M, Mehta S B et al. MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously[J]. Optics Express, 23, 7734-7754(2015).

    [95] Descloux A, Grußmayer K S, Bostan E et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy[J]. Nature Photonics, 12, 165-172(2018).

    [96] Louis B, Camacho R, Bresolí-Obach R et al. Fast-tracking of single emitters in large volumes with nanometer precision[J]. Optics Express, 28, 28656-28671(2020).

    [97] Sims R R, Rehman S A, Lenz M O et al. Single molecule light field microscopy[J]. Optica, 7, 1065-1072(2020).

    [98] Hajj B, Beheiry M E, Dahan M. PSF engineering in multifocus microscopy for increased depth volumetric imaging[J]. Biomedical Optics Express, 7, 726-731(2016).

    [99] Oudjedi L, Fiche J B, Abrahamsson S et al. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging[J]. Biomedical Optics Express, 7, 2163-2173(2016).

    [100] McMahon M D, Berglund A J, Carmichael P et al. 3D particle trajectories observed by orthogonal tracking microscopy[J]. ACS Nano, 3, 609-614(2009).

    [101] Tang J, Akerboom J, Vaziri A et al. Near-isotropic 3D optical nanoscopy with photon-limited chromophores[J]. Proceedings of the National Academy of Sciences of the USA, 107, 10068-10073(2010).

    [102] Yajima J, Mizutani K, Nishizaka T. A torque component present in mitotic kinesin Eg5 revealed by three-dimensional tracking[J]. Nature Structural & Molecular Biology, 15, 1119-1121(2008).

    [103] Sun Y, McKenna J D, Murray J M et al. Parallax: high accuracy three-dimensional single molecule tracking using split images[J]. Nano Letters, 9, 2676-2682(2009).

    [104] Guo C L, Liu W H, Hua X W et al. Fourier light-field microscopy[J]. Optics Express, 27, 25573-25594(2019).

    [105] Ruckstuhl T, Verdes D. Supercritical angle fluorescence (SAF) microscopy[J]. Optics Express, 12, 4246-4254(2004).

    [106] Dasgupta A, Deschamps J, Matti U et al. Direct supercritical angle localization microscopy for nanometer 3D superresolution[J]. Nature Communications, 12, 1180(2021).

    [107] Ries J, Ruckstuhl T, Verdes D et al. Supercritical angle fluorescence correlation spectroscopy[J]. Biophysical Journal, 94, 221-229(2008).

    [108] Enderlein J, Ruckstuhl T, Seeger S. Highly efficient optical detection of surface-generated fluorescence[J]. Applied Optics, 38, 724-732(1999).

    [109] Richards B, Wolf E, Gabor D. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 253, 358-379(1959).

    [110] James Shirley F, Neutens P, Vos R et al. Supercritical angle fluorescence characterization using spatially resolved Fourier plane spectroscopy[J]. Analytical Chemistry, 90, 4263-4267(2018).

    [111] Bourg N, Mayet C, Dupuis G et al. Direct optical nanoscopy with axially localized detection[J]. Nature Photonics, 9, 587-593(2015).

    [112] Winterflood C M, Ruckstuhl T, Verdes D et al. Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy[J]. Physical Review Letters, 105, 108103(2010).

    [113] Cabriel C, Bourg N, Jouchet P et al. Combining 3D single molecule localization strategies for reproducible bioimaging[J]. Nature Communications, 10, 1-10(2019).

    [114] Barroca T, Balaa K, Lévêque-Fort S et al. Full-field near-field optical microscope for cell imaging[J]. Physical Review Letters, 108, 218101(2012).

    [115] Deschamps J, Mund M, Ries J. 3D superresolution microscopy by supercritical angle detection[J]. Optics Express, 22, 29081-29091(2014).

    [116] Iinuma R, Ke Y G, Jungmann R et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT[J]. Science, 344, 65-69(2014).

    [117] Zelger P, Bodner L, Velas L et al. Defocused imaging exploits supercritical-angle fluorescence emission for precise axial single molecule localization microscopy: erratum[J]. Biomedical Optics Express, 11, 5456-5457(2020).

    [118] de Hell S D. Doppelkonfokales Rastermikroskop: EP0491289A1[P](1992).

    [119] Wang J, Allgeyer E S, Sirinakis G et al. Implementation of a 4Pi-SMS super-resolution microscope[J]. Nature Protocols, 16, 677-727(2021).

    [120] Zhang Y, Schroeder L K, Lessard M D et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging[J]. Nature Methods, 17, 225-231(2020).

    [121] Huang F, Sirinakis G, Allgeyer E S et al. Ultra-high resolution 3D imaging of whole cells[J]. Cell, 166, 1028-1040(2016).

    [122] Aquino D, Schönle A, Geisler C et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores[J]. Nature Methods, 8, 353-359(2011).

    [123] Shtengel G, Galbraith J A, Galbraith C G et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 3125-3130(2009).

    [124] Middendorff C V, Egner A, Geisler C et al. Isotropic 3D Nanoscopy based on single emitter switching[J]. Optics Express, 16, 20774-20788(2008).

    [125] Case L B, Baird M A, Shtengel G et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions[J]. Nature Cell Biology, 17, 880-892(2015).

    [126] Brown T A, Tkachuk A N, Shtengel G et al. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction[J]. Molecular and Cellular Biology, 31, 4994-5010(2011).

    [127] Kanchanawong P, Shtengel G, Pasapera A M et al. Nanoscale architecture of integrin-based cell adhesions[J]. Nature, 468, 580-584(2010).

    [128] Egner A, Jakobs S, Hell S W. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 99, 3370-3375(2002).

    [129] von Diezmann L, Lee M Y, Lew M D et al. Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy[J]. Optica, 2, 985-993(2015).

    [130] Burke D, Patton B, Huang F et al. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy[J]. Optica, 2, 177-185(2015).

    [131] Gu L, Li Y, Zhang S et al. Molecular-scale axial localization by repetitive optical selective exposure[J]. Nature Methods, 18, 369-373(2021).

    [132] Gu L, Li Y, Zhang S et al. Molecular resolution imaging by repetitive optical selective exposure[J]. Nature Methods, 16, 1114-1118(2019).

    [133] Wu Z Y, Xu X Z, Xi P. Stimulated emission depletion microscopy for biological imaging in four dimensions: a review[J]. Microscopy Research and Technique, 84, 1947-1958(2021).

    [134] Heine J, Reuss M, Harke B et al. Adaptive-illumination STED nanoscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 9797-9802(2017).

    [135] Danzl J G, Sidenstein S C, Gregor C et al. Coordinate-targeted fluorescence nanoscopy with multiple off states[J]. Nature Photonics, 10, 122-128(2016).

    [136] Spahn C, Grimm J B, Lavis L D et al. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores[J]. Nano Letters, 19, 500-505(2019).

    [137] Bergermann F, Alber L, Sahl S J et al. 2000-fold parallelized dual-color STED fluorescence nanoscopy[J]. Optics Express, 23, 211-223(2015).

    [138] Bingen P, Reuss M, Engelhardt J et al. Parallelized STED fluorescence nanoscopy[J]. Optics Express, 19, 23716-23726(2011).

    [139] Weber M, Leutenegger M, Stoldt S et al. MINSTED fluorescence localization and nanoscopy[J]. Nature Photonics, 15, 361-366(2021).

    [140] Watanabe S, Punge A, Hollopeter G et al. Protein localization in electron micrographs using fluorescence nanoscopy[J]. Nature Methods, 8, 80-84(2011).

    [141] Wang H D, Rivenson Y, Jin Y Y et al. Deep-learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature methods, 16, 103-110(2019).

    [142] Mattheyses A L, Simon S M, Rappoport J Z. Imaging with total internal reflection fluorescence microscopy for the cell biologist[J]. Journal of Cell Science, 123, 3621-3628(2010).

    [143] Szalai A M, Siarry B, Lukin J et al. Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules[J]. Nature Communications, 12, 517(2021).

    [144] Yu B, Yu J, Li W et al. Nanoscale three-dimensional single particle tracking by light-sheet-based double-helix point spread function microscopy[J]. Applied Optics, 55, 449-453(2016).

    [145] Mangeol P, Peterman E J. High-resolution real-time dual-view imaging with multiple point of view microscopy[J]. Biomedical Optics Express, 7, 3631-3642(2016).

    [146] Gustavsson A K, Petrov P N, Lee M Y et al. 3D single-molecule super-resolution microscopy with a tilted light sheet[J]. Nature Communications, 9, 123(2018).

    [147] Gustavsson A K, Petrov P N, Moerner W E. Light sheet approaches for improved precision in 3D localization-based super-resolution imaging in mammalian cells[J]. Optics Express, 26, 13122-13147(2018).

    [148] Schueder F, Lara-Gutiérrez J, Beliveau B J et al. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT[J]. Nature Communications, 8, 2090(2017).

    [149] Chen X Z, Zeng Z P, Wang H N et al. Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes[J]. Nano Research, 8, 2251-2260(2015).

    [150] Hosny N A, Song M, Connelly J T et al. Super-resolution imaging strategies for cell biologists using a spinning disk microscope[J]. PLoS One, 8, e74604(2013).

    [151] Gwosch K C, Pape J K, Balzarotti F et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells[J]. Nature Methods, 17, 217-224(2020).

    [152] Eilers Y, Ta H, Gwosch K C et al. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 6117-6122(2018).

    [153] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [154] Sharonov A, Hochstrasser R M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes[J]. Proceedings of the National Academy of Sciences of USA, 103, 18911-18916(2006).

    [155] Silverberg J L, Jungmann R, Avendano M S et al. DNA-paint and exchange-paint for multiplexed 3D super-resolution microscopy[J]. Biophysical Journal, 108, 477a(2015).

    [156] Jungmann R, Avendaño M S, Woehrstein J B et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT[J]. Nature Methods, 11, 313-318(2014).

    [157] Schlichthaerle T, Lindner C, Jungmann R. Super-resolved visualization of single DNA-based tension sensors in cell adhesion[J]. Nature Communications, 12, 2510(2021).

    [158] Aristov A, Lelandais B, Rensen E et al. ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range[J]. Nature Communications, 9, 2409(2018).

    [159] Sage D, Pham T A, Babcock H et al. Super-resolution fight club:assessment of 2D and 3D single-molecule localization microscopy software[J]. Nature Methods, 16, 387-395(2019).

    [160] Liu B, Xue Y, Zhao W et al. Three-dimensional super-resolution protein localization correlated with vitrified cellular context[J]. Scientific Reports, 5, 13017(2015).

    [161] Xu X J, Xue Y H, Tian B Y et al. Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy[J]. Science China Life Sciences, 61, 1312-1319(2018).

    [162] Chang Y W, Chen S, Tocheva E I et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography[J]. Nature Methods, 11, 737-739(2014).

    [163] Weisenburger S, Boening D, Schomburg B et al. Cryogenic optical localization provides 3D protein structure data with Angstrom resolution[J]. Nature Methods, 14, 141-144(2017).

    [164] Dahlberg P D, Moerner W E. Cryogenic super-resolution fluorescence and electron microscopy correlated at the nanoscale[J]. Annual Review of Physical Chemistry, 72, 253-278(2021).

    [165] Kopek B G, Shtengel G, Xu C S et al. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 6136-6141(2012).

    [166] Sochacki K A, Shtengel G, van Engelenburg S B et al. Correlative super-resolution fluorescence and metal-replica transmission electron microscopy[J]. Nature Methods, 11, 305-308(2014).

    Xiao Wang, Shijie Tu, Xin Liu, Yuehan Zhao, Cuifang Kuang, Xu Liu, Xiang Hao. Advance and Prospect for Three-Dimensional Super-Resolution Microscopy[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2200001
    Download Citation