• Laser & Optoelectronics Progress
  • Vol. 53, Issue 12, 120002 (2016)
Li Chaoyi1、*, An Junming1、2, Zhang Jiashun1, Wang Liangliang1, Wu Yuanda1、2, Yin Xiaojie1, and Wang Yue1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop53.120002 Cite this Article Set citation alerts
    Li Chaoyi, An Junming, Zhang Jiashun, Wang Liangliang, Wu Yuanda, Yin Xiaojie, Wang Yue. Integrated Transmitter and Receiver Chips for Data Center[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120002 Copy Citation Text show less
    References

    [1] Kanazawa S, Fujisawa T, Takahata K, et al. 400-Gb/s operation of flip-chip interconnection EADFB laser array module[C]. 2015 Optical Fiber Communications Conference and Exhibition, 2015, Tu3I: Tu3I.1.

    [2] IEEE P802.3ba. 40 Gb/s and 100 Gb/s ethernet task force[S/OL]. (2010-06-19)[2016-06-20]. http://www.ieee802.org/3/ba/.

    [3] IEEE P802.3bs. 200 Gb/s and 400 Gb/s ethernet task force[S/OL]. (2016-05-16)[2016-06-20]. http://www.ieee802.org/3/bs/.

    [4] Yang Yuede, Sui Shaoshuai, Tang Mingying,et al. Investigation of Ⅲ-Ⅴ on silicon adhesively bonded semiconductor lasers with metal confinement[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110010.

    [5] Cui Rong, Yang Xiaohong, Lü Qianqian, et al. InGaAs/InP photodetector on SOI circuitry[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110003.

    [6] Pan P, An J M, Wang Y, et al. Compact 4-channel AWGs for CWDM and LAN WDM AWG in data center monolithic applications[J]. Optics & Laser Technology, 2015, 75: 177-181.

    [7] An Junming, Zhang Jiashun, Wang Yue, et al. Study on wavelength division multiplexer for silicon photonics[J]. Laser & OptoElectronics Progress, 2014, 51(11): 110006.

    [8] Shi Y C, Fu X, Dai D X. Design and fabrication of a 200 GHz Si-nanowire-based reflective arrayed-waveguide grating (de) multiplexer with optimized photonic crystal reflectors[J]. Applied Optics, 2010, 49(26): 4859-4865.

    [9] Ding J F, Chen H T, Yang L, et al. Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator[J]. Optics Express, 2012, 20(7): 7081-7087.

    [10] Cole C, Huebner B, Johnson J E. Photonic integration for high-volume, low-cost applications[J]. IEEE Communications Magazine, 2009, 47(3): S16-S22.

    [11] Lee J K, Jang Y S. Compact 4×25 Gb/s optical receiver and transceiver for 100G ethernet interface[C]. 2015 International Conference on Information and Communication Technology Convergence (ICTC), 2015: 758-760.

    [12] Arima R, Hatano T, Hiramoto K, et al. Demonstration of world-first 112 Gbit/s 1310 nm LAN-WDM optical transceiver for 100GbE and 100GbE over OTN applications[C]. Optical Fiber Communication Conference, 2010, PDPD: PDPD3.

    [13] Arima R, Yamashita T, Yahagi T, et al. Demonstration of world-first 103 Gbit/s transmission over 40 km single mode fiber by 1310 nm LAN-WDM optical transceiver for 100GbE[C]. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2011, JWA: JWA9.

    [14] Murao T, Yasui N, Shinada T, et al. Integrated spatial optical system for compact 28-Gb/s×4-lane transmitter optical subassemblies[J]. IEEE Photonics Technology Letters, 2014, 26(22): 2275-2278.

    [15] Kang S K, Lee J K, Lee J C, et al. A Compact 4×10-Gb/s CWDM ROSA module for 40G ethernet optical transceiver[C]. 2010 Proceedings 60th Electronic Components and Technology Conference, 2010: 2001-2005.

    [16] Mochizuki K, Itamoto H, Aruga H, et al. Built-in optics for 4ch-WDM ROSA in 100Gbps ethernet[C]. 2010 15th Opto Electronics and Communications Conference, 2010: 242-243.

    [18] Xu X J, Huebner B. Multi-laser transmitter optical subassembly: US20120189323[P]. 2012-07-26.

    [19] Ohyama T, Doi Y, Kobayashi W, et al. Compact hybrid integrated 100-Gb/s transmitter optical sub-assembly using optical butt-coupling between EADFB lasers and silica-based AWG multiplexer[J]. Journal of Lightwave Technology, 2016, 34(3): 1038-1046.

    [20] Ohyama T, Doi Y, Kobayashi W, et al. Compact hybrid-integrated 100-Gb/s TOSA using EADFB laser array and AWG multiplexer[J]. IEEE Photonics Technology Letters, 2016, 28(7): 802-805.

    [21] Doi Y, Oguma M, Ito M, et al. Compact ROSA for 100-Gb/s (4×25 Gb/s) ethernet with a PLC-based AWG demultiplexer[C]. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2013, NW1J: NW1J.5.

    [22] Doi Y, Oguma M, Yoshimatsu T, et al. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s ethernet[J]. Journal of Lightwave Technology, 2015, 33(15): 3286-3292.

    [23] Doi Y, Nakanishi Y, Yoshimatsu T, et al. Compact 8-wavelength receiver optical sub-assembly with a low-loss AWG demultiplexer for 400-gigabit datacom[C]. 2015 European Conference on Optical Communication (ECOC), 2015: 1-3.

    [24] Ni Y, Kong X, Gu X F, et al. Packaging and testing of multi-wavelength DFB laser array using REC technology[J]. Optics Communications, 2014, 312: 123-126.

    [25] Lu L L, Shi Y C, Chen X F. Four channel DFB laser array based on the reconstruction-equivalent-chirp technique for 1.3 μm CWDM systems[C]. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2013, JTh2A: JTh2A.29.

    [26] Lee J K, Kang S K, Huh J Y, et al. Highly alignment tolerant 4×25 Gb/s ROSA module for 100G ethernet optical transceiver[C]. 39th European Conference and Exhibition on Optical Communications, 2013: 888-890.

    [27] Fujisawa T, Kanazawa S, Ishii H, et al. 1.3 μm 4×25 Gb/s monolithically integrated light source for metro area 100 Gb/s ethernet[J]. IEEE Photonics Technology Letters, 2011, 23(6): 356-358.

    [28] Kanazawa S, Fujisawa T, Ohki A, et al. A compact EADFB laser array module for a future 100-Gb/s ethernet transceiver[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1191-1197.

    [29] Kanazawa S, Fujisawa T, Ohki A, et al. Low-voltage operation of 100-Gbit/s EADFB laser array module[C]. 22nd IEEE International Semiconductor Laser Conference, 2010, TuC2: 57-58.

    [30] Fujisawa T, Kanazawa S, Takahata K, et al. Large-output-power, ultralow-driving-voltage (0.5Vpp) operation of 1.3-μm, 4×25 G, EADFB laser array for driverless 100GbE transmitter[C]. 37th European Conference and Exposition on Optical Communications, 2011, Mo.1. LeSaleve: Mo.1.LeSaleve.1.

    [31] Fujisawa T, Kanazawa S, Takahata K, et al. 1.3-μm, 4×25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter[J]. Optics Express, 2012, 20(1): 614-620.

    [32] Kanazawa S, Fujisawa T, Nunoya N, et al. Extremely small-form 100GbE transmitter optical sub-assembly for future inter data center cloud networks[C]. Optical Fiber Communication Conference, 2012, PDP5B: PDP5B.8.

    [33] Kanazawa S, Fujisawa T, Nunoya N, et al. Ultra-compact 100 GbE transmitter optical sub-assembly for 40-km SMF transmission[J]. Journal of Lightwave Technology, 2013, 31(4): 602-608.

    [34] Kanazawa S, Fujisawa T, Ohki A, et al. Compact flip-chip interconnection 8×50 Gbit/s EADFB laser array module for 400 Gbit/s transceiver[J]. Electronics Letters, 2014, 50(7): 533-534.

    [35] Kanazawa S, Fujisawa T, Takahata K, et al. 8×50-Gb/s simultaneous operation of EADFB laser array using flip-chip interconnection technique[C]. 2014 IEEE International Semiconductor Laser Conference, 2014: 58-59.

    [36] Guo F, Zhang R K, Lu D, et al. 1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth[J]. Optics Communications, 2014, 331: 165-168.

    [37] Guo F, Sun M D, Wang H T, et al. 4×25-Gb/s monolithically integrated light source in the data centre[C]. 2015 Optoelectronics Global Conference (OGC), 2015: 1-2.

    [38] Mekis A, Abdalla S, De Dobbelaere P M, et al. Scaling CMOS photonics transceivers beyond 100 Gb/s[C]. SPIE, 2012, 8265: 82650A.

    [39] Kanazawa S, Fujisawa T, Takahata K, et al. Flip-chip interconnection technique for beyond 100-Gb/s (4×25.8-Gb/s) EADFB laser array transmitter[J]. Journal of Lightwave Technology, 2016, 34(2): 296-302.

    [40] Chen H, Zhang Z, Huang B J, et al. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits[J]. Journal of Semiconductors, 2015, 36(12): 121001.

    [41] Pinguet T, Analui B, Balmater E, et al. Monolithically integrated high-speed CMOS photonic transceivers[C]. 2008 5th IEEE International Conference on Group Ⅳ Photonics, 2008: 362-364.

    [42] Pinguet T, Analui B, Masini G, et al. 40 Gbps monolithically integrated transceivers in CMOS photonics[C]. SPIE, 2008, 6898: 689805.

    [43] Ramaswamy A, Roth J, Norberg E, et al. A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32 nm CMOS driver ICs[C]. Optical Fiber Communication Conference Post Deadline Papers, 2015, Th5B: Th5B.5.

    [44] Komljenovic T, Davenport M, Hulme J, et al. Heterogeneous silicon photonic integrated circuits[J]. Journal of Lightwave Technology, 2016, 34(1): 20-35.

    CLP Journals

    [1] Li Chenlei, Dai Daoxin. Mode Conversion and Coupling in Silicon-Based Nanometer Photonic Integrated Circuits[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50003

    Li Chaoyi, An Junming, Zhang Jiashun, Wang Liangliang, Wu Yuanda, Yin Xiaojie, Wang Yue. Integrated Transmitter and Receiver Chips for Data Center[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120002
    Download Citation