• Laser & Optoelectronics Progress
  • Vol. 59, Issue 4, 0430001 (2022)
Lixin Zhang1、2, Nannan Zhang1, and Xiao Zhang1、*
Author Affiliations
  • 1College of Information Engineering, Tarum University, Alaer, Xinjiang 843300, China
  • 2School of Science, Nanjing University of Science and Technology, Nanjing , Jiangsu 210094, China
  • show less
    DOI: 10.3788/LOP202259.0430001 Cite this Article Set citation alerts
    Lixin Zhang, Nannan Zhang, Xiao Zhang. Discriminant Analysis of Apple Origin Based on Machine Learning Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0430001 Copy Citation Text show less
    References

    [1] Cao X F, Ren H R, Li X Z et al. Discrimination of winter jujube’s maturity using hyperspectral technique combined with characteristic wavelength and spectral indices[J]. Spectroscopy and Spectral Analysis, 38, 2175-2182(2018).

    [2] Li J Y, Zhang S J, Zhang X H et al. Research on the hyperspectral imaging judgment of the plum maturity[J]. Journal of Agricultural Mechanization Research, 39, 141-145(2017).

    [3] Zhang M, Li G H. Detection method of slight bruises of apples based on hyperspectral imaging and RELIEF-extreme learning machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 45, 126-134(2019).

    [4] Chen X X, Guo C T, Zhang C et al. Visual detection study on early bruises of Korla pear based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 37, 150-155(2017).

    [5] Fang Y M, Yang F, Zhou Z et al. Hyperspectral wavelength selection and integration for bruise detection of Korla pears[J]. Journal of Spectroscopy, 2019, 6715247(2019).

    [6] Cao X L, Chen X M, Zhang S et al. Ramie variety identification based on the hyperspectral parameters and the stepwise discriminant analysis[J]. Spectroscopy and Spectral Analysis, 38, 1547-1551(2018).

    [7] Liu L X, He D, Li M Z et al. Identification of Xinjiang jujube varieties based on hyperspectral technique and machine learning[J]. Chinese Journal of Lasers, 47, 1111002(2020).

    [8] Wang Q G, Huang M, Zhu Q B et al. Geographical origin and years identification of maize seeds based on the hyperspectral image[J]. Journal of Food Science and Biotechnology, 33, 163-170(2014).

    [9] Wang L, Qin H, Li J et al. Geographical origin identification of lycium barbarum using near-infrared hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 40, 1270-1275(2020).

    [10] Lin L, Wu J Z, Liu C L et al. Study on hyperspectral identification method of rice origin in northeast/non-northeast China based on conjunctive model[J]. Spectroscopy and Spectral Analysis, 40, 905-910(2020).

    [11] Ji H Y, Ren Z Q, Rao Z H. Discriminant analysis of millet from different origins based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 39, 2271-2277(2019).

    [12] Qian L L, Song X J, Zhang D J et al. Tracing the geographical origin of Sanjiang and Wuchang rice grown in different years by near infrared spectroscopy[J]. Food Science, 39, 321-327(2018).

    [13] Zhang J J, Liu G S, Ren Y C et al. Rapid detection of freshness in tan-lamb mutton based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 39, 1909-1914(2019).

    [14] Ye R K, Chen Y Y, Guo Y C et al. NIR hyperspectral imaging technology combined with multivariate methods to identify shrimp freshness[J]. Applied Sciences, 10, 5498(2020).

    [15] Shao Y Y, Wang Y X, Xuan G T et al. Hyperspectral imaging technique for estimating the shelf-life of kiwifruits[J]. Spectroscopy and Spectral Analysis, 40, 1940-1946(2020).

    [16] Zhou L P, Zhao Y R, Yu K Q et al. Hyperspectral technique for estimating the shelf-lives of fresh spinach leaves covered with film[J]. Spectroscopy and Spectral Analysis, 37, 423-428(2017).

    [17] Dai S S, Yin Y. Fisher discriminant analysis for moldy degrees of maize samples based on the feature selection of hyperspectral data[J]. Food & Machinery, 34, 68-72(2018).

    [18] Sun Z B, Wang T Z, Li J K et al. Detecting adulterated beef meatball using hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 40, 2208-2214(2020).

    [19] Liu P, Ma M H. Application of hyperspectral technology for detecting adulterated whole egg powder[J]. Spectroscopy and Spectral Analysis, 38, 246-252(2018).

    [20] Bai J, Li J P, Zou H et al. Qualitative and quantitative detection of pork in adulterated beef patties based on near infrared spectroscopy[J]. Food Science, 40, 287-292(2019).

    [21] Yang H, Chen D J, Xia D H et al. Adulteration and purity detection of Chinese giant salamander meat powder based on near infrared spectroscopy[J]. Food Science, 40, 331-336(2019).

    [22] Chen Y, Zhang C, Xiao C Y et al. Study on prediction model of soil cadmium content moisture content correction based on GWO-SVR[J]. Acta Optica Sinica, 40, 1030002(2020).

    [23] Ershat A, Baidengsha M, Mamat S et al. Combined estimation of chlorophyll content in cotton canopy based on hyperspectral parameters and back propagation neural network[J]. Acta Optica Sinica, 39, 0930003(2019).

    [24] Diwu P Y, Bian X H, Wang Z F et al. Study on the selection of spectral preprocessing methods[J]. Spectroscopy and Spectral Analysis, 39, 2800-2806(2019).

    [25] Song X Z, Tang G, Zhang L D et al. Research advance of variable selection algorithms in near infrared spectroscopy analysis[J]. Spectroscopy and Spectral Analysis, 37, 1048-1052(2017).

    Lixin Zhang, Nannan Zhang, Xiao Zhang. Discriminant Analysis of Apple Origin Based on Machine Learning Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0430001
    Download Citation