• Photonics Research
  • Vol. 8, Issue 3, 381 (2020)
Roy Avrahamy1, Moshe Zohar2, Mark Auslender1、*, Benny Milgrom3, Shlomo Hava1、2, and Rafi Shikler1、4
Author Affiliations
  • 1School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
  • 2Electrical and Electronics Engineering Department, Shamoon College of Engineering, Beer-Sheva 84100, Israel
  • 3School of Electrical Engineering, The Jerusalem College of Technology, Jerusalem 91160, Israel
  • 4Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
  • show less
    DOI: 10.1364/PRJ.375802 Cite this Article Set citation alerts
    Roy Avrahamy, Moshe Zohar, Mark Auslender, Benny Milgrom, Shlomo Hava, Rafi Shikler. In-depth investigation and applications of novel silicon photonics microstructures supporting optical vorticity and waveguiding for ultra-narrowband near-infrared perfect absorption[J]. Photonics Research, 2020, 8(3): 381 Copy Citation Text show less
    References

    [1] B. D. Clymer, D. Gillfillan. Corrugation gratings for fast integrated complementary metal-oxide semiconductor photodetectors: implementation and diffraction analyses. Appl. Opt., 30, 4390-4395(1991).

    [2] U. Hilleringmann, K. Goser. Optoelectronic system integration on silicon: waveguides, photodetectors, and VLSI CMOS circuits on one chip. IEEE Trans. Electron Dev., 42, 841-846(1995).

    [3] S. S. Murtaza, H. Nie, J. C. Campbell, J. C. Bean, L. J. Peticolas. Short-wavelength, high-speed, Si-based resonant-cavity photodetector. IEEE Photon. Technol. Lett., 8, 927-929(1996).

    [4] J. C. Bean, C. L. Schow, R. Li, H. Nie, J. Schaub, J. C. Campbell. High-speed polysilicon resonant-cavity photodiode with SiO2−Si Bragg reflectors. IEEE Photon. Technol. Lett., 9, 806-808(1997).

    [5] J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton. Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth. IEEE Photon. Technol. Lett., 11, 1647-1649(1999).

    [6] M. K. Emsley, O. Dosunmu, M. S. Unlu. High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates. IEEE Photon. Technol. Lett., 14, 519-521(2002).

    [7] S. M. Csutak, S. Dakshina-Murthy, J. C. Campbell. CMOS-compatible planar silicon waveguide-grating-coupler photodetectors fabricated on silicon-on-insulator (SOI) substrates. IEEE J. Quantum Electron., 38, 477-480(2002).

    [8] L. Pavesi. Will silicon be the photonic material of the third millenium?. J. Phys. Condens. Matter., 15, R1169-R1196(2003).

    [9] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600-4615(2006).

    [10] W. N. Ye, Y. Xiong. Review of silicon photonics: history and recent advances. J. Modern Opt., 60, 1299-1320(2013).

    [11] K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, T. Yamamoto. High-performance silicon photonics technology for telecommunications applications. Sci. Technol. Adv. Mater., 15, 024603(2014).

    [12] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, M. Nedeljkovic. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [13] Y. Zou, S. Chakravarty, C.-J. Chung, X. Xu, R. T. Chen. Mid-infrared silicon photonic waveguides and devices. Photon. Res., 6, 254-276(2018).

    [14] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni. Coupling strategies for silicon photonics integrated chips. Photon. Res., 7, 201-239(2019).

    [15] A. Rogalski. Recent progress in infrared detector technologies. Infrared Phys. Technol., 54, 136-154(2011).

    [16] M. S. Ünlü, S. Strite. Resonant cavity enhanced photonic devices. J. Appl. Phys., 78, 607-639(1995).

    [17] Y. El-Batawy, J. Deen. Resonant cavity enhanced photodetectors (RCE-PDs): structure, material, analysis and optimization. Proc. SPIE, 4999, 363-378(2003).

    [18] Y. El-Batawy, J. Deen. Modeling and optimization of resonant cavity enhanced-separated absorption graded charge multiplication-avalanche photodetector (RCE-SAGCM-APD). IEEE Trans. Electron Dev., 50, 790-801(2003).

    [19] K. Hejduk, K. Pierściński, W. Rzodkiewicz, J. Muszalski, J. Kaniewski. Dielectric coatings for infrared detectors. Optica Applicata, 35, 437-442(2005).

    [20] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [21] M. Zohar, M. Auslender, L. Faraone, S. Hava. Novel resonant cavity-enhanced absorber structures for high-efficiency midinfrared photodetector application. J. Nanophoton., 5, 0518248(2011).

    [22] M. Zohar, M. Auslender, L. Faraone, S. Hava. New resonant cavity-enhanced absorber structures for mid-infrared detector applications. Opt. Quantum Electron., 44, 95-102(2012).

    [23] M. M. P. Fard, C. Williams, G. Cowan, O. Liboiron-Ladouceur. High-speed grating-assisted all-silicon photodetectors for 850 nm applications. Opt. Express, 25, 5107-5118(2017).

    [24] C. J. Chang-Hasnain, W. Yang. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photon., 4, 379-440(2012).

    [25] G. J. Gbur. Singular Optics(2016).

    [26] J. G. A. Wehner, C. A. Musca, R. H. Sewell, J. M. Dell, L. Faraone. Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors. Appl. Phys. Lett., 87, 211104(2005).

    [27] M. S. Ünlü, K. Kishino, H. J. Liaw, H. Morkoç. A theoretical study of resonant cavity-enhanced photodectectors with Ge and Si active regions. J. Appl. Phys., 71, 4049-4058(1992).

    [28] J. Wehner, C. Musca, R. Sewell, J. Dell, L. Faraone. Responsivity and lifetime of resonant-cavity-enhanced HgCdTe detectors. Solid-State Electron., 50, 1640-1648(2006).

    [29] Y. El-Batawy, M. Medhat. Biasing dependent circuit modeling and optimization of resonant cavity enhanced PIN photodetectors (RCE-PIN-PDs). Proc. SPIE, 9656, 96560P(2015).

    [30] E. D. Palik, H. Philipp. Silicon dioxide (SiO2) (glass). Handbook of Optical Constants of Solids, 749-763(1997).

    [31] H. Philipp, E. D. Palik. Silicon nitride (Si3N4) (noncrystalline). Handbook of Optical Constants of Solids, 771-774(1997).

    [32] E. D. Palik, D. F. Edwards. Silicon (Si). Handbook of Optical Constants of Solids, 547-569(1997).

    [33] C. Alonso-Ramos, X. Le Roux, J. Zhang, D. Benedikovic, V. Vakarin, E. Durán-Valdeiglesias, D. Oser, D. Pérez-Galacho, F. Mazeas, L. Labonté, S. Tanzilli, E. Cassan, D. Marris-Morini, P. Cheben, L. Vivien. Diffraction-less propagation beyond the sub-wavelength regime: a new type of nanophotonic waveguide. Sci. Rep., 9, 5347(2019).

    [34] F. Glover, R. Martí, G. A. Kochenberger. Multi-start methods. Handbook of Metaheuristics, 355-368(1997).

    [35] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, R. Martí. Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J. Comput., 19, 328-340(2007).

    [36] MATLAB R2019a and optimization toolbox 8.3(2019).

    [37] O. S. Heavens. Optical Properties of Thin Solid Films(1991).

    [38] K. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [39] W. Nakagawa, Y. Fainman. Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures. IEEE J. Sel. Top. Quantum Electron., 10, 478-483(2004).

    [40] P. Lalanne, C. Sauvan, J. Hugonin. Photon confinement in photonic crystal nanocavities. Laser Photon. Rev., 2, 514-526(2008).

    [41] J. Wang, J. Hu, P. Becla, A. M. Agarwal, L. C. Kimerling. Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform. Opt. Express, 18, 1640-1648(2010).

    [42] S. Rytov. Electromagnetic properties of a finely stratified medium. Sov. Phys. JETP, 2, 466-475(1956).

    [43] S. S. Wang, R. Magnusson. Theory and applications of guided-mode resonance filters. Appl. Opt., 32, 2606-2613(1993).

    Roy Avrahamy, Moshe Zohar, Mark Auslender, Benny Milgrom, Shlomo Hava, Rafi Shikler. In-depth investigation and applications of novel silicon photonics microstructures supporting optical vorticity and waveguiding for ultra-narrowband near-infrared perfect absorption[J]. Photonics Research, 2020, 8(3): 381
    Download Citation