• Advanced Photonics Nexus
  • Vol. 3, Issue 2, 026011 (2024)
Bin Yang1, Xiaopeng Shen1, Liwei Shi1, Yuting Yang1、2、*, and Zhi Hong Hang3、4
Author Affiliations
  • 1China University of Mining and Technology, School of Materials and Physics, Xuzhou, China
  • 2Southeast University, State Key Laboratory of Millimeter Waves, Nanjing, China
  • 3Soochow University, School of Physical Science and Technology and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
  • 4Soochow University, Institute for Advanced Study, Suzhou, China
  • show less
    DOI: 10.1117/1.APN.3.2.026011 Cite this Article Set citation alerts
    Bin Yang, Xiaopeng Shen, Liwei Shi, Yuting Yang, Zhi Hong Hang. Nonuniform pseudo-magnetic fields in photonic crystals[J]. Advanced Photonics Nexus, 2024, 3(2): 026011 Copy Citation Text show less
    References

    [1] K. V. Klitzing, G. Dorda, M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett., 45, 494(1980).

    [2] D. J. Thouless et al. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405(1982).

    [3] F. Guinea, M. I. Katsnelson, A. K. Geim. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys., 6, 30(2010).

    [4] N. Levy et al. Strain-induced pseudo–magnetic fields greater than 300 Tesla in graphene nanobubbles. Science, 329, 544(2010).

    [5] G. Salerno et al. How to directly observe Landau levels in driven-dissipative strained honeycomb lattices. 2D Mater., 2, 034015(2015).

    [6] G. Salerno et al. Propagating edge states in strained honeycomb lattices. Phys. Rev. B, 95, 245418(2017).

    [7] É. Lantagne-Hurtubise, X. X. Zhang, M. Franz. Dispersive Landau levels and valley currents in strained graphene nanoribbons. Phys. Rev. B, 101, 085423(2020).

    [8] B. L. Wu et al. Transport property of inhomogeneous strained graphene. Chin. Phys. B, 30, 030504(2021).

    [9] H. Abbaszadeh et al. Sonic Landau levels and synthetic gauge fields in mechanical metamaterials. Phys. Rev. Lett., 119, 195502(2017).

    [10] C. Brendel et al. Pseudomagnetic fields for sound at the nanoscale. Proc. Natl. Acad. Sci. U. S. A., 114, 3390(2017).

    [11] Z. Yang et al. Strain-induced gauge field and Landau levels in acoustic structures. Phys. Rev. Lett., 118, 194301(2017).

    [12] X. Wen et al. Acoustic Landau quantization and quantum-Hall-like edge states. Nat. Phys., 15, 352-356(2019).

    [13] J. Luo et al. Pseudomagnetic fields and Landau levels for out-of-plane elastic waves in gradient snowflake-shaped crystals. Phys. Lett. A, 383, 125974(2019).

    [14] M. C. Rechtsman et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photonics, 7, 153-158(2013).

    [15] H. Schomerus, N. Y. Halpern. Parity anomaly and Landau-level lasing in strained photonic honeycomb lattices. Phys. Rev. Lett., 110, 013903(2013).

    [16] O. Jamadi et al. Direct observation of photonic Landau levels and helical edge states in strained honeycomb lattices. Light Sci. Appl., 9, 144(2020).

    [17] M. Bellec et al. Observation of supersymmetric pseudo-Landau levels in strained microwave graphene. Light Sci. Appl., 9, 146(2020).

    [18] C. R Mann, S. A. R. Horsley, E. Mariani. Tunable pseudo-magnetic fields for polaritons in strained metasurfaces. Nat. Photonics, 14, 669-674(2020).

    [19] J. Guglielmon, M. C. Rechtsman, M. I. Weinstein. Landau levels in strained two-dimensional photonic crystals. Phys. Rev. A, 103, 013505(2021).

    [20] Z. T. Huang et al. Strain-tunable synthetic gauge fields in topological photonic graphene(2021).

    [21] F. S. Deng et al. Valley-dependent beams controlled by pseudomagnetic field in distorted photonic graphene. Opt. Lett., 40, 3380-3383(2015).

    [22] W. Wang et al. Moiré fringe induced gauge field in photonics. Phys. Rev. Lett., 125, 203901(2020).

    [23] H. T. Teo et al. Pseudomagnetic suppression of non-Hermitian skin effect(2023).

    [24] R. Barczyk et al. Interplay of leakage radiation and protection in topological photonic crystal cavities. Laser Photonics Rev., 16, 200071(2022).

    [25] K. Chen et al. Photonic Dirac cavities with spatially varying mass term. Sci. Adv., 9, eabq4243(2023).

    [26] S. Kiriushechkina et al. Spin-dependent properties of optical modes guided by adiabatic trapping potentials in photonic Dirac metasurfaces. Nat. Nanotechnol., 18, 875-881(2023).

    [27] A. Vakulenko et al. Adiabatic topological photonic interfaces. Nat. Commun., 14, 4629(2023).

    [28] H. Jia et al. Experimental realization of chiral Landau levels in two-dimensional Dirac cone systems with inhomogeneous effective mass. Light Sci. Appl., 12, 165(2023).

    [29] L. Oroszlány et al. Theory of snake states in graphene. Phys. Rev. B, 77, 081403(2008).

    [30] T. K. Ghosh et al. Conductance quantization and snake states in graphene magnetic waveguides. Phys. Rev. B, 77, 081404(2008).

    [31] J. R. Williams, C. M. Marcus. Snake states along graphene p-n junctions. Phys. Rev. Lett., 107, 046602(2011).

    [32] T. Taychatanapat et al. Conductance oscillations induced by ballistic snake states in a graphene heterojunction. Nat. Commun., 6, 6093(2015).

    [33] L. Cohnitz et al. Interaction-induced conductance from zero modes in a clean magnetic graphene waveguide. Phys. Rev. B, 92, 085422(2015).

    [34] P. Rickhaus et al. Snake trajectories in ultraclean graphene p–n junctions. Nat. Commun., 6, 6470(2015).

    [35] C. Zuo et al. Reverse strain-induced snake states in graphene nanoribbons. Phys. Rev. B, 105, 195420(2022).

    [36] Y. N. Ren et al. Magnetic field-tunable valley-contrasting pseudomagnetic confinement in graphene. Phys. Rev. Lett., 129, 076802(2022).

    [37] M. Yan et al. Pseudomagnetic fields enabled manipulation of on-chip elastic waves. Phys. Rev. Lett., 127, 136401(2021).

    [38] B. Yang et al. Details of the topological state transition induced by gradually increased disorder in photonic Chern insulators. Opt. Express, 28, 31487-31498(2020).

    [39] M. Wang et al. Topological one-way large-area waveguide states in magnetic photonic crystals. Phys. Rev. Lett., 126, 067401(2021).

    [40] M. Wang et al. Valley-locked waveguide transport in acoustic heterostructures. Nat. Commun., 11, 3000(2020).

    [41] J. Q. Wang et al. Extended topological valley-locked surface acoustic waves. Nat. Commun., 13, 1324(2022).

    [42] Q. L. Chen et al. Photonic topological valley-locked waveguides. ACS Photonics, 8, 1400-1406(2021).

    [43] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045(2010).

    [44] B. K. Alexander, S. Gennady. Two-dimensional topological photonics. Nat. Photonics, 11, 763-773(2017).

    Bin Yang, Xiaopeng Shen, Liwei Shi, Yuting Yang, Zhi Hong Hang. Nonuniform pseudo-magnetic fields in photonic crystals[J]. Advanced Photonics Nexus, 2024, 3(2): 026011
    Download Citation