• Acta Optica Sinica
  • Vol. 41, Issue 7, 0703002 (2021)
Fengxiang Ma1, Yu Tian2, Ke Chen3、*, Bo Zhang3, Chenxi Li3, Guangyin Zhang3, Min Guo3, Beilei Yang3, and Yue Zhao1
Author Affiliations
  • 1Electric Power Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei, Anhui 230601, China
  • 2State Grid Anhui Electric Power Co., Ltd., Hefei, Anhui 230061, China
  • 3School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China
  • show less
    DOI: 10.3788/AOS202141.0703002 Cite this Article Set citation alerts
    Fengxiang Ma, Yu Tian, Ke Chen, Bo Zhang, Chenxi Li, Guangyin Zhang, Min Guo, Beilei Yang, Yue Zhao. Detection Technology of H2S and CO2 Based on Fiber Amplifier Enhanced Photoacoustic Spectroscopy[J]. Acta Optica Sinica, 2021, 41(7): 0703002 Copy Citation Text show less
    References

    [1] Pandey S K, Kim K H, Tang K T. A review of sensor-based methods for monitoring hydrogen sulfide[J]. TrAC Trends in Analytical Chemistry, 32, 87-99(2012).

    [2] Tang J, Rao X J, Zeng F P et al. Influence mechanisms of trace H2O on the generating process of SF6 spark discharge decomposition components[J]. Plasma Chemistry and Plasma Processing, 37, 325-340(2017). http://link.springer.com/article/10.1007/s11090-016-9764-8

    [3] Tang N, Qiao S Y, Li L et al. Validity of HF and H2S as target gases of insulation monitoring in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 32, 202-211(2017).

    [4] Chen K, Zhang B, Guo M et al. All-optical photoacoustic multigas analyzer using digital fiber-optic acoustic detector[J]. IEEE Transactions on Instrumentation and Measurement, 69, 8486-8493(2020). http://ieeexplore.ieee.org/document/9090196

    [5] Chen K, Liu S, Zhang B et al. Highly sensitive photoacoustic multi-gas analyzer combined with mid-infrared broadband source and near-infrared laser[J]. Optics and Lasers in Engineering, 124, 105844(2020).

    [6] Zhou D P, Liu C Y, Zeng J et al. The analysis of SF6 gas chromatography equipment on the spot application and studies[J]. Journal of Electric Power, 24, 412-415(2009).

    [7] Yu Y J, Sanchez N P, Griffin R J et al. CW EC-QCL-based sensor for simultaneous detection of H2O, HDO, N2O and CH4 using multi-pass absorption spectroscopy[J]. Optics Express, 24, 10391-10401(2016). http://www.ncbi.nlm.nih.gov/pubmed/27409863

    [8] Wang Z L, Chang J, Yu H S et al. Multi-component and multi-point trace gas sensing in wavelength modulation spectroscopy based on wavelength stabilization[J]. Photonic Sensors, 9, 376-387(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ6dc20aca2c48fc55

    [9] Yu Z X, Xu J J. Feasibility study on application of TDLAS technology to detection of H2S in SF6 discharge decomposition products[J]. High Voltage Apparatus, 50, 42-46(2014).

    [10] Liu X, Zhang T, Zhang G et al. Carbon monoxide detection based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 47, 0111002(2020).

    [11] Chen K, Yuan S, Gong Z F et al. Ultra-high sensitive photoacoustic spectrometer for trace gas detection based on fiber-optic acoustic sensors[J]. Acta Optica Sinica, 38, 0328015(2018).

    [12] Chen Y, Gao G Z, Cai T D. Detection technique of ethylene based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 44, 0511001(2017).

    [13] Jin G, Bai S E, Xia L H et al. Photoacoustic study on spectral absorption of optical films[J]. Acta Optica Sinica, 8, 643-647(1988).

    [14] Wang Q, Xu K, Yao C Y et al. Recent advances of power-enhanced photoacoustic spectroscopy for gas sensing[J]. Chinese Journal of Lasers, 45, 0911008(2018).

    [15] Ma F X, Tian Y, Chen K et al. Technique for detection of dissolved gas in oil based on miniature photoacoustic sensor[J]. Acta Optica Sinica, 40, 0730003(2020).

    [16] Xie Z H, Chen G X, Li T J et al. EDFA gain flattening equalizer based on long period fiber gratings[J]. Chinese Journal of Lasers, 28, 553-555(2001).

    [17] Chen K, Gong Z F, Yu Q X. Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection[J]. Sensors and Actuators A, 274, 184-188(2018).

    [18] Werle P, Mücke R, Slemr F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)[J]. Applied Physics B, 57, 131-139(1993). http://link.springer.com/article/10.1007%2FBF00425997

    [19] Arndt R. Analytical line shapes for lorentzian signals broadened by modulation[J]. Journal of Applied Physics, 36, 2522-2524(1965).

    [20] Rothman L S. The evolution and impact of the HITRAN molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 1565-1567(2010).

    [21] Wu H, Dong L, Zheng H et al. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring[J]. Nature Communications, 8, 15331(2017). http://www.ncbi.nlm.nih.gov/pubmed/28561065

    [22] Chen K, Yu Z H, Gong Z F et al. Lock-in white-light-interferometry-based all-optical photoacoustic spectrometer[J]. Optics Letters, 43, 5038-5041(2018).

    [23] Zhang L L, Liu J X, Zhu Z Z et al. Detection of trace sulfur dioxide gas using quartz-enhanced photoacoustic spectroscopy[J]. Laser & Optoelectronics Progress, 56, 213001(2019).

    [24] Zhang B, Chen K, Chen Y W et al. High-sensitivity photoacoustic gas detector by employing multi-pass cell and fiber-optic microphone[J]. Optics Express, 28, 6618-6630(2020).

    Fengxiang Ma, Yu Tian, Ke Chen, Bo Zhang, Chenxi Li, Guangyin Zhang, Min Guo, Beilei Yang, Yue Zhao. Detection Technology of H2S and CO2 Based on Fiber Amplifier Enhanced Photoacoustic Spectroscopy[J]. Acta Optica Sinica, 2021, 41(7): 0703002
    Download Citation