• Photonic Sensors
  • Vol. 10, Issue 2, 105 (2020)
Elena MILIUTINA1、2, Yevgeniya KALACHYOVA2, Pavel POSTNIKOV1、2, Vaclav ?VOR?íK1, and Oleksiy LYUTAKOV1、2、*
Author Affiliations
  • 1Department of Solid-State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
  • 2Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, Tomsk 634050, Russia
  • show less
    DOI: 10.1007/s13320-019-0562-9 Cite this Article
    Elena MILIUTINA, Yevgeniya KALACHYOVA, Pavel POSTNIKOV, Vaclav ?VOR?íK, Oleksiy LYUTAKOV. Enhancement of Surface Plasmon Fiber Sensor Sensitivity Through the Grafting of Gold Nanoparticles[J]. Photonic Sensors, 2020, 10(2): 105 Copy Citation Text show less
    References

    [1] O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. -vor-ík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sensors and Actuators B: Chemical, 2017, 253: 830– 838.

    [2] S. Liu, Z. Zheng, and X. Li, “Advances in pesticide biosensors: current status challenges and future perspectives,” Analytical and Bioanalytical Chemistry, 2013, 405(1): 63–90.

    [3] R. C. Stevens, S. D. Soelberg, S. Near, and C. E. Furlong, “Detection of cortisol in saliva with a flow-filtered portable surface plasmon resonance biosensor system,” Analytical Chemistry, 2008, 80(17): 6747–6751.

    [4] X. Guo, “Surface plasmon resonance based biosensor technique: a review,” Journal of Biophotonics, 2012, 5(7): 483–501.

    [5] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials, 2008, 7(6): 442–453.

    [6] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics, 2010, 4(2): 83–91.

    [7] J. Svanda, Y. Kalachyova, P. Slepicka, V. Svorcik, and O. Lyutakov, “Smart component for switching of plasmon resonance by external electric field,” ACS Applied Materials & Interfaces, 2015, 8(1): 225–231.

    [8] C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Analytical and Bioanalytical Chemistry, 2015, 407(14): 3883–3897.

    [9] C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano, 2014, 8(12): 11925–11940.

    [10] I. Arghir, F. Delport, D. Spasic, and J. Lammertyn, “Smart design of fiber optic surfaces for improved plasmonic biosensing,” New Biotechnology, 2015, 32(5): 473–484.

    [11] N. Khansili, G. Rattu, and P. M. Krishna, “Label-free optical biosensors for food and biological sensor applications,” Sensors and Actuators B: Chemical, 2018, 265: 35–49.

    [12] I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 2008, 28(3): 214–242.

    [13] R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sensors and Actuators B: Chemical, 2007, 123(1): 10–12.

    [14] Y. Chen, Y. Yu, X. Li, Z. Tan, and Y. Geng, “Experimental comparison of fiber-optic surface plasmon resonance sensors with multi metal layers and single silver or gold layer,” Plasmonics, 2015, 10(6): 1801–1808.

    [15] J. Homola, “Surface plasmon resonance (SPR),” Analytical and Bioanalytical Chemistry, 2003, 377: 528–539.

    [16] W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sensors and Actuators B: Chemical, 2018, 264: 440–447.

    [17] V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosensors and Bioelectronics, 2014, 51: 249–254.

    [18] Q. Liu, Y. Liu, S. Chen, F. Wang, and W. Peng, “A low-cost and portable dual-channel fiber optic surface plasmon resonance system,” Sensors, 2017, 17(12): 2797–2804.

    [19] B. Lee, J. H. Park, J. Y. Byun, J. H. Kim, and M. G. Kim, “An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin,” Biosensors and Bioelectronics, 2018, 102: 504–509.

    [20] S. K. Mishra and B. D. Gupta, “Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers,” Analyst, 2013, 138(9): 2640–2646.

    [21] X. Yang, Y. Lu, B. Liu, and J. Yao, “High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling,” IEEE Photonics Journal, 2018, 10(2): 1–9.

    [22] J. F. Masson, L. Obando, S. Beaudoin, and K. Booksh, “Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I,” Talanta, 2004, 62(5): 865–870.

    [23] T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Optics & Laser Technology, 2016, 78: 19–33.

    [24] P. Jia and J. Yang, “Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing,” Applied Physics Letters, 2013, 102(24): 243107.

    [25] G. Nemova and R. Kashyap, “Fiber-Bragggrating- assisted surface plasmon-polariton sensor,” Optics Letters, 2006, 31(14): 2118–2120.

    [26] Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, et al., “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Physical Chemistry Chemical Physics, 2017, 19(22): 14761–14769.

    [27] Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, et al., “The effect of silver grating and nanoparticles grafting for LSP-SPP coupling and SERS response intensification,” The Journal of Physical Chemistry C, 2016, 120(19): 10569–10577.

    [28] T. Maurer, P. M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophotonics, 2015, 4(3): 363–382.

    [29] I. Kaminska, T. Maurer, R. Nicolas, M. Renault, T. Lerond, R. Salas-Montiel, et al., “Near-field and far-field sensitivities of LSPR sensors,” The Journal of Physical Chemistry C, 2015, 119(17): 9470–9476.

    [30] A. Saini, R. Medwal, S. Bedi, B. Mehta, R. Gupta, T. Maurer, et. al., “Axonic Au tips induced enhancement in Raman spectra and biomolecular sensing,” Plasmonics, 2015, 10(3): 617–623.

    [31] Y. Kalachyova, A. Olshtrem, O. A. Guselnikova, P. S. Postnikov, R. Elashnikov, P. Ulbrich, et al., “Synthesis characterization and antimicrobial activity of near-IR photoactive functionalized gold multibranched nanoparticles,” Chemistryopen, 2017, 6(2): 254–260.

    [32] P. Bhatia and B. D. Gupta, “Surface-plasmonresonance- based fiber-optic refractive index sensor: sensitivity enhancement,” Applied Optics, 2011, 50(14): 2032–2036.

    [33] S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sensors and Actuators A: Physical, 2013, 193: 136–140.

    Elena MILIUTINA, Yevgeniya KALACHYOVA, Pavel POSTNIKOV, Vaclav ?VOR?íK, Oleksiy LYUTAKOV. Enhancement of Surface Plasmon Fiber Sensor Sensitivity Through the Grafting of Gold Nanoparticles[J]. Photonic Sensors, 2020, 10(2): 105
    Download Citation