• Photonics Research
  • Vol. 7, Issue 5, 494 (2019)
Zhongjian Xie1、†, Feng Zhang1、†, Zhiming Liang1、†, Taojian Fan1, Zhongjun Li2, Xiantao Jiang1、3、5, Hong Chen4、6, Jianqing Li2, and Han Zhang1、*
Author Affiliations
  • 1Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Faculty of Information Technology, Macau University of Science and Technology, Macao, China
  • 3College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
  • 4School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
  • 5e-mail: jiangxtemail@sina.com
  • 6e-mail: chenhongcs@126.com
  • show less
    DOI: 10.1364/PRJ.7.000494 Cite this Article Set citation alerts
    Zhongjian Xie, Feng Zhang, Zhiming Liang, Taojian Fan, Zhongjun Li, Xiantao Jiang, Hong Chen, Jianqing Li, Han Zhang. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide[J]. Photonics Research, 2019, 7(5): 494 Copy Citation Text show less
    References

    [1] F. Xia, H. Wang, Y. Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5, 4458(2014).

    [2] S. Lin, S. Liu, Z. Yang, Y. Li, T. W. Ng, Z. Xu, Q. Bao, J. Hao, C. Lee, C. Surya. Solution‐processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics. Adv. Funct. Mater., 26, 864-871(2016).

    [3] Y. Wang, G. Huang, H. Mu, S. Lin, J. Chen, S. Xiao, Q. Bao, J. He. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension. Appl. Phys. Lett., 107, 091905(2015).

    [4] V. Tran, R. Soklaski, Y. Liang, L. Yang. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 235319(2014).

    [5] S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, D. Y. Fan. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express, 23, 11183-11194(2015).

    [6] D. Li, A. E. D. R. Castillo, H. Jussila, G. Ye, Z. Ren, J. Bai, X. Chen, H. Lipsanen, Z. Sun, F. Bonaccorso. Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Appl. Mater. Today, 4, 17-23(2016).

    [7] C. Zhao, D. Fan, D. Tang, G. Jiang, H. Zhang, Q. Bao, S. Wen, S. Chen, X. Yu, Y. Chen. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 23, 12823-12833(2015).

    [8] H. Mu, S. Lin, Z. Wang, S. Xiao, P. Li, Y. Chen, H. Zhang, H. Bao, P. L. Shu, C. Pan. Pulsed lasers: black phosphorus–polymer composites for pulsed lasers. Adv. Opt. Mater., 3, 1447-1453(2015).

    [9] J. O. Island, G. A. Steele, H. S. J. van der Zant, A. Castellanos-Gomez. Environmental instability of few-layer black phosphorus. 2D Mater., 2, 11002(2014).

    [10] A. Castellanosgomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimhaacharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez. Isolation and characterization of few-layer black phosphorus. 2D Mater., 1, 25001(2014).

    [11] R. A. Doganov, E. C. O’Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, T. Taniguchi. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun., 6, 6647(2015).

    [12] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, A. Castellanosgomez. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 14, 3347-3352(2014).

    [13] A. Favron, E. Gaufrès, F. Fossard, A. L. Phaneuf-L’Heureux, Y. W. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, R. Martel. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater., 14, 826-832(2015).

    [14] A. Avsar, I. J. Veramarun, J. Y. Tan, K. Watanabe, T. Taniguchi, A. H. C. Neto, B. Özyilmaz. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano, 9, 4138-4145(2015).

    [15] J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, M. C. Hersam. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett., 14, 6964-6970(2014).

    [16] C. R. Ryder, J. D. Wood, S. A. Wells, Y. Yang, D. Jariwala, T. J. Marks, G. C. Schatz, M. C. Hersam. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem., 8, 597-602(2016).

    [17] Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, W. Han. Surface coordination of black phosphorus for robust air and water stability. Angew. Chemie, 55, 5003-5007(2016).

    [18] T. Xian, W. Liang, J. Zhao, Z. Li, Q. Meng, T. Fan, C. S. Luo, Z. Ye, L. Yu, Z. Guo. Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small, 13, 1702739(2017).

    [19] S. Tan, I. Abdelwahab, L. Chu, S. M. Poh, Y. Liu, J. Lu, W. Chen, K. P. Loh. Quasi-monolayer black phosphorus with high mobility and air stability. Adv. Mater., 30, 1704619(2018).

    [20] Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater., 29, 1703811(2017).

    [21] X. Chen, Y. Wu, Z. Wu, Y. Han, S. Xu, L. Wang, W. Ye, T. Han, Y. He, Y. Cai. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun., 6, 7315(2014).

    [22] C. Xing, G. Jing, X. Liang, M. Qiu, Z. Li, R. Cao, X. Li, D. Fan, H. Zhang. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale, 9, 8096-8101(2017).

    [23] J. Na, Y. T. Lee, J. A. Lim, D. K. Hwang, G. T. Kim, W. K. Choi, Y. W. Song. Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano, 8, 11753-11762(2014).

    [24] Y. Zhao, Q. Zhou, Q. Li, X. Yao, J. Wang. Passivation of black phosphorus via self-assembled organic monolayers by van der Waals epitaxy. Adv. Mater., 29, 1603990(2017).

    [25] M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci., 115, 501-506(2018).

    [26] L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, Q. Wang. Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc., 135, 1213-1216(2013).

    [27] D. Xue, J. Tan, J. Hu, W. Hu, Y. Guo, L. Wan. Anisotropic photoresponse properties of single micrometer‐sized GeSe nanosheet. Adv. Mater., 24, 4528-4533(2012).

    [28] S. Zhang, N. Wang, S. Liu, S. Huang, W. Zhou, B. Cai, M. Xie, Q. Yang, X. Chen, H. Zeng. Two-dimensional GeS with tunable electronic properties via external electric field and strain. Nanotechnology, 27, 274001(2016).

    [29] C. Xin, J. Zheng, Y. Su, S. Li, B. Zhang, Y. Feng, F. Pan. Few-layer tin sulfide: a new black-phosphorus-analogue 2D material with a sizeable band gap, odd–even quantum confinement effect, and high carrier mobility. J. Phys. Chem. C, 120, 22663-22669(2016).

    [30] L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 508, 373-377(2014).

    [31] L. D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 351, 141-144(2015).

    [32] A. Rodin, L. Gomes, A. Carvalho, A. Castro Neto. Valley physics in tin (II) sulfide. Phys. Rev. B, 93, 045431(2016).

    [33] M. Wu, X. C. Zeng. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett., 16, 3236-3241(2016).

    [34] R. Fei, W. Kang, L. Yang. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett., 117, 097601(2016).

    [35] M. Mehboudi, A. M. Dorio, W. Zhu, , A. van der Zande, H. O. H. Churchill, A. A. Pachecosanjuan, E. O. Harriss, P. Kumar, S. Barrazalopez. Two-dimensional disorder in black phosphorus and monochalcogenide monolayers. Nano Lett., 16, 1704-1712(2015).

    [36] C. Chang, M. Wu, D. He, Y. Pei, C. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang. 3D charge and 2D phonon transports leading to high out-of-plane ZT in N-type SnSe crystals. Science, 360, 778-783(2018).

    [37] Z. Tian, C. Guo, M. Zhao, R. Li, J. Xue. Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano, 11, 2219-2226(2016).

    [38] R. Fei, W. Li, J. Li, L. Yang. Giant piezoelectricity of monolayer group IV monochalcogenides. Appl. Phys. Lett., 107, 173104(2015).

    [39] J. Xia, X. Z. Li, X. Huang, N. Mao, D. D. Zhu, L. Wang, H. Xu, X. M. Meng. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale, 8, 2063-2070(2015).

    [40] S. M. Herron, J. T. Tanskanen, K. E. Roelofs, S. F. Bent. Highly textured tin(II) sulfide thin films formed from sheetlike nanocrystal inks. Chem. Mater., 26, 7106-7113(2014).

    [41] R. E. Banai, L. A. Burton, S. G. Choi, F. Hofherr, T. Sorgenfrei, A. Walsh, B. To, A. Cröll, J. R. S. Brownson. Ellipsometric characterization and density-functional theory analysis of anisotropic optical properties of single-crystal α-SnS. J. Appl. Phys., 116, 013511(2014).

    [42] N. K. Reddy, M. Devika, E. S. R. Gopal. Review on tin (II) sulfide (SnS) material: synthesis, properties, and applications. Crit. Rev. Solid State Mater. Sci., 40, 1-37(2015).

    [43] L. Peng, C. Wang, Q. Qian, C. Bi, S. Wang, Y. Huang. Complete separation of carriers in the GeS/SnS lateral heterostructure by uniaxial tensile strain. ACS Appl. Mater. Interfaces, 9, 40969-40977(2017).

    [44] J. Xia, D. Zhu, X. Li, L. Wang, L. Tian, J. Li, J. Wang, X. Huang, X. Meng. Epitaxy of layered orthorhombic SnS–SnSxSe(1–x) core–shell heterostructures with anisotropic photoresponse. Adv. Funct. Mater., 26, 4673-4679(2016).

    [45] H. Zhu, D. Yang, Y. Ji, Z. Hui, X. Shen. Two-dimensional SnS nanosheets fabricated by a novel hydrothermal method. J. Mater. Sci., 40, 591-595(2005).

    [46] M. Sharon, K. Basavaswaran. Photoelectrochemical behaviour of tin monosulphide. Sol. Cells, 25, 97-107(1988).

    [47] Z. Xie, D. Wang, T. Fan, C. Xing, Z. Li, W. Tao, L. Liu, D. Fan, H. Zhang. Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. J. Mater. Chem. B, 6, 4747-4755(2018).

    [48] V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R. E. Brandt, J. R. Poindexter, Y. S. Lee, L. Sun, A. Polizzotti, H. H. Park. 3.88% efficient tin sulfide solar cells using congruent thermal evaporation. Adv. Mater., 26, 7488-7492(2014).

    [49] P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, R. G. Gordon. Overcoming efficiency limitations of SnS‐based solar cells. Adv. Energy Mater., 4, 1400496(2015).

    [50] T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, Z. Guo. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano, 8, 8323-8333(2014).

    [51] S. Hwang, Z. Yao, L. Zhang, M. Fu, K. He, L. Mai, C. Wolverton, D. Su. Multistep lithiation of tin sulfide: an investigation using in situ electron microscopy. ACS Nano, 12, 3638-3645(2018).

    [52] H. Wu, X. Lu, G. Wang, K. Peng, H. Chi, B. Zhang, Y. Chen, C. Li, Y. Yan, L. Guo, C. Uher. Sodium-doped tin sulfide single crystal: a nontoxic earth-abundant material with high thermoelectric performance. Adv. Energy Mater., 8, 1800087(2018).

    [53] K. Szendrei‐Temesi, O. Sanchez‐Sobrado, S. B. Betzler, K. M. Durner, T. Holzmann, B. V. Lotsch. Lithium tin sulfide—a high‐refractive‐index 2D material for humidity‐responsive photonic crystals. Adv. Funct. Mater., 28, 1705740(2018).

    [54] H. Wang, D. Chao, J. Liu, J. Lin, Z. Shen. Nanoengineering of 2D tin sulfide nanoflake arrays incorporated on polyaniline nanofibers with boosted capacitive behavior. 2D Mater., 5, 031005(2018).

    [55] W. Cheng, N. Singh, W. Elliott, J. Lee, A. Rassoolkhani, X. Jin, E. W. Mcfarland, S. Mubeen. Earth‐abundant tin sulfide‐based photocathodes for solar hydrogen production. Adv. Sci., 5, 1700362(2018).

    [56] J. R. Brent, D. J. Lewis, T. Lorenz, E. A. Lewis, N. Savjani, S. J. Haigh, G. Seifert, B. Derby, P. O’Brien. Tin(II) sulfide (SnS) nanosheets by liquid-phase exfoliation of herzenbergite: IV-VI main group two-dimensional atomic crystals. J. Am. Chem. Soc., 137, 12689-12696(2015).

    [57] A. M. Tripathi, S. Mitra. Tin sulfide (SnS) nanorods: structural, optical and lithium storage property study. RSC Adv., 4, 10358-10366(2014).

    [58] J. Chao, Z. Wang, X. Xu, Q. Xiang, W. Song, G. Chen, J. Hu, D. Chen. Tin sulfide nanoribbons as high performance photoelectrochemical cells, flexible photodetectors and visible-light-driven photocatalysts. RSC Adv., 3, 2746-2753(2012).

    [59] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen. Broadband nonlinear photonics in few‐layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev., 12, 1700229(2018).

    [60] K. Wang, Y. Ju, J. He, L. Zhang, Y. Chen, W. J. Blau, J. Wang. Nonlinear optical propagation in a tandem structure comprising nonlinear absorption and scattering materials. Appl. Phys. Lett., 104, 021110(2014).

    [61] C. B. de Araújo, A. S. Gomes, G. Boudebs. Techniques for nonlinear optical characterization of materials: a review. Rep. Prog. Phys. Phys. Soc., 79, 036401(2016).

    [62] E. Sani, A. Dell’Oro. Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Opt. Mater. (Amsterdam), 60, 137-141(2016).

    [63] C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat. Commun., 8, 14111(2017).

    [64] L. Lu, Z. Liang, L. Wu, Y. X. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing. Few‐layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photon. Rev., 12, 1700221(2018).

    [65] Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater., 4, 045010(2017).

    [66] C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, H. Zhang. Selenium nanosets: 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv. Opt. Mater., 5, 1700884(2017).

    [67] C. Ruckebusch, M. Sliwa, P. Pernot, , A. De, R. Tauler. Comprehensive data analysis of femtosecond transient absorption spectra: a review. J. Photochem. Photobiol. C Photochem. Rev., 13, 1-27(2012).

    [68] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [69] Q. Bao, Z. Han, W. Yu, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, Y. T. Ding. Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2010).

    [70] J. Ma, H. Huang, K. Ning, X. Xu, G. Xie, L. Qian, K. P. Loh, D. Tang. Generation of 30  fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser. Opt. Lett., 41, 890-893(2016).

    [71] S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, J. Wang. Broadband few-layer MoS2 saturable absorbers. Adv. Mater., 26, 3538-3544(2014).

    [72] R. Paschotta, U. Keller. Passive mode locking with slow saturable absorbers. Appl. Phys. B, 73, 653-662(2001).

    [73] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 23, 12823-12833(2015).

    CLP Journals

    [1] Hualong Chen, Xiantao Jiang, Shixiang Xu, Han Zhang. Recent progress in multi-wavelength fiber lasers: principles, status, and challenges[J]. Chinese Optics Letters, 2020, 18(4): 041405

    [2] Zhenhong Wang, Bin Zhang, Bing Hu, Zhongjun Li, Chunyang Ma, Yu Chen, Yufeng Song, Han Zhang, Jun Liu, Guohui Nie. Two-dimensional tin diselenide nanosheets pretreated with an alkaloid for near- and mid-infrared ultrafast photonics[J]. Photonics Research, 2020, 8(11): 1687

    [3] Cong Wang, Qianyuan Chen, Hualong Chen, Jun Liu, Yufeng Song, Jie Liu, Delong Li, Yanqi Ge, Youning Gong, Yupeng Zhang, Han Zhang. Boron quantum dots all-optical modulator based on efficient photothermal effect[J]. Opto-Electronic Advances, 2021, 4(7): 200032-1

    [4] Si Xiao, Ying Ma, Yilin He, Yiduo Wang, Hao Xin, Qi Fan, Jingdi Zhang, Xiaohong Li, Yu Zhang, Jun He, Yingwei Wang. Revealing the intrinsic nonlinear optical response of a single MoS2 nanosheet in a suspension based on spatial self-phase modulation[J]. Photonics Research, 2020, 8(11): 1725

    [5] Byungjoo Kim, Seongjin Hong, Jaedeok Park, Yongsoo Lee, Dong-il Yeom, Kyunghwan Oh. Laser-driven self-exfoliation of graphene oxide layers on a fiber facet for Q switching of an Er-doped fiber laser at the longest wavelength[J]. Photonics Research, 2020, 8(8): 1324

    Zhongjian Xie, Feng Zhang, Zhiming Liang, Taojian Fan, Zhongjun Li, Xiantao Jiang, Hong Chen, Jianqing Li, Han Zhang. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide[J]. Photonics Research, 2019, 7(5): 494
    Download Citation