• Photonics Research
  • Vol. 9, Issue 10, 1948 (2021)
Liwei Tang1、2, Hongxiang Jia1、2, Shuai Shao1、2, Sigang Yang1、2, Hongwei Chen1、2, and Minghua Chen1、2、*
Author Affiliations
  • 1Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • 2Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, China
  • show less
    DOI: 10.1364/PRJ.428837 Cite this Article Set citation alerts
    Liwei Tang, Hongxiang Jia, Shuai Shao, Sigang Yang, Hongwei Chen, Minghua Chen. Hybrid integrated low-noise linear chirp frequency-modulated continuous-wave laser source based on self-injection to an external cavity[J]. Photonics Research, 2021, 9(10): 1948 Copy Citation Text show less
    References

    [1] C.-H. Yang, Y. Zhang, C.-F. Jin, L. Xu, X. Yang, Q. Wang, Y.-H. Liu, Y. J. Zhao. A scheme of pulse compression lidar with enhanced modulated bandwidth for detection through scattering media. Opt. Commun., 381, 205-209(2016).

    [2] X. Zhang, J. Pouls, M. C. Wu. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR. Opt. Express, 27, 9965-9974(2019).

    [3] P. Zhou, F. Zhang, Q. Guo, S. J. Pan. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser. Opt. Express, 24, 18460-18467(2016).

    [4] M. Wegmuller, J. Von Der Weid, P. Oberson, N. Gisin. High resolution fiber distributed measurements with coherent OFDR. ECOC’00, 109(2000).

    [5] D. F. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, M. J. Rubio. Linear FMCW laser radar for precision range and vector velocity measurements. MRS Online Proc. Library Archive, 1076, 10760406(2008).

    [6] A. Vasilyev. The Optoelectronic Swept-Frequency Laser and Its Applications in Ranging, Three-Dimensional Imaging, and Coherent Beam Combining of Chirped-Seed Amplifiers(2013).

    [7] R. Huber, M. Wojtkowski, J. J. Fujimoto. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express, 14, 3225-3237(2006).

    [8] J. Tang, B. Zhu, W. Zhang, M. Li, S. Pan, J. J. Yao. Hybrid Fourier-domain mode-locked laser for ultra-wideband linearly chirped microwave waveform generation. Nat. Commun., 11, 3814(2020).

    [9] H. Gao, C. Lei, M. Chen, F. Xing, H. Chen, S. Xie. A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio. Opt. Express, 21, 23107-23115(2013).

    [10] W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, L. J. Maleki. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun., 6, 7371(2015).

    [11] R. Tkach, A. R. Chraplyvy. Regimes of feedback effects in 1.5-μm distributed feedback lasers. J. Lightwave Technol., 4, 1655-1661(1986).

    [12] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine. Microring resonator channel dropping filters. J. Lightwave Technol., 15, 998-1005(1997).

    [13] M. Yousefi, D. Lenstra, G. Vemuri, A. P. A. Fischer. Control of nonlinear dynamics of a semiconductor laser with filtered optical feedback. IEE Proc. Optoelectron., 148, 233-237(2001).

    [14] M. Yousefi, D. Lenstra. Dynamical behavior of a semiconductor laser with filtered external optical feedback. IEEE J. Quantum Electron., 35, 970-976(1999).

    [15] Y. Liu, P. Davis, Y. Takiguchi, T. Aida, S. Saito, J.-M. Liu. Injection locking and synchronization of periodic and chaotic signals in semiconductor lasers. IEEE J. Quantum Electron., 39, 269-278(2003).

    [16] G. A. Acket, D. Lenstra, A. J. Denboef, B. H. Verbeek. The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor-lasers. IEEE J. Quantum Electron., 20, 1163-1169(1984).

    [17] D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, C. Roeloffzen. Silicon nitride in silicon photonics. Proc. IEEE, 106, 2209-2231(2018).

    [18] D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. J. Zörner. Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Ocean. Technol., 17, 1469-1482(2000).

    [19] J. F. Bauters, M. J. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express, 19, 3163-3174(2011).

    [20] L. Tang, Y. Li, J. Li, S. Yang, H. Chen, J. E. Chen. Temperature-insensitive Mach–Zehnder interferometer based on a silicon nitride waveguide platform. Opt. Express, 45, 2780-2783(2020).

    [21] L. Tang, J. Li, S. Yang, H. Chen, M. Chen. A method for improving reflection tolerance of laser source in hybrid photonic packaged micro-system. IEEE Photonics Technol. Lett., 33, 465-468(2021).

    [22] J. Li, B. Zhang, S. Yang, H. Chen, M. Chen. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector. Photon. Res., 9, 558-566(2021).

    [23] L. Chrostowski, M. Hochberg. Silicon Photonics Design: From Devices to Systems(2015).

    [24] D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, J. E. Bowers. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 6, 745-752(2019).

    [25] L. Columbo, J. Bovington, S. Romero-Garcia, D. F. Siriani, M. Gioannini. Efficient and optical feedback tolerant hybrid laser design for silicon photonics applications. IEEE J. Sel. Top. Quantum Electron., 26, 8301210(2019).

    [26] M. A. Tran, D. Huang, J. E. Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 4, 111101(2019).

    [27] J. W. Dawson, N. Park, K. J. Vahala. An improved delayed self-heterodyne interferometer for linewidth measurements. IEEE Photonics Technol. Lett., 4, 1063-1066(1992).

    [28] S. Camatel, V. Ferrero. Narrow linewidth CW laser phase noise characterization methods for coherent transmission system applications. J. Lightwave Technol., 26, 3048-3055(2008).

    [29] L. B. Mercer. 1/f frequency noise effects on self-heterodyne linewidth measurements. J. Lightwave Technol., 9, 485-493(1991).

    [30] P. Gallion, H. Nakajima, G. Debarge, C. Chabran. Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser. Electron. Lett., 21, 626-628(1985).

    [31] L. Stern, W. Zhang, L. Chang, J. Guo, C. Xiang, M. A. Tran, D. Huang, J. D. Peters, D. Kinghorn, J. E. Bowers. Ultra-precise optical-frequency stabilization with heterogeneous III–V/Si lasers. Opt. Lett., 45, 5275-5278(2020).

    [32] L. Tang, S. Shao, S. Yang, H. Chen, M. Chen. Frequency modulated continuous wave narrow linewidth laser diode based on self-injection locking with external micro-ring resonator. European Conference of Integrated Optics (ECIO), 1-3(2020).

    [33] M. Kamoun, R. K. Zadeh, Z. Zhao, G. Yang, H. Bao. Radio over fiber for cellular networks: system identification and pre-distortion strategies. IEEE Wireless Communications and Networking Conference (WCNC), 1-6(2019).

    [34] H.-S. Ahn, Y. Chen, K. L. Moore. Iterative learning control: brief survey and categorization. IEEE Trans. Syst. Man Cybern. C, 37, 1099-1121(2007).

    [35] M. Han, B. Mheen. High-resolution remote range detection method based on uncompensated FMCW sources for low-cost FMCW LIDAR. Proc. SPIE, 11525, 1152523(2020).

    [36] A. Dieckmann. FMCW-LIDAR with tunable twin-guide laser diode. Electron. Lett., 30, 308-309(1994).

    [37] S. O. Piper. FMCW linearizer bandwidth requirements. IEEE National Radar Conference, 142-146(1991).

    [38] X. Fan, Y. Koshikiya, F. J. Ito. Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method. Opt. Lett., 32, 3227-3229(2007).

    [39] M. Liang, Q. Liu, W. Hu. 1550 nm monolithic MOPA diode laser for Lidar applications. Proc. SPIE, 11182, 1118207(2019).

    [40] A. Martin, D. Dodane, L. Leviandier, D. Dolfi, A. Naughton, P. O’Brien, T. Spuessens, R. Baets, G. Lepage, J. Verheyen. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol., 36, 4640-4645(2018).

    Liwei Tang, Hongxiang Jia, Shuai Shao, Sigang Yang, Hongwei Chen, Minghua Chen. Hybrid integrated low-noise linear chirp frequency-modulated continuous-wave laser source based on self-injection to an external cavity[J]. Photonics Research, 2021, 9(10): 1948
    Download Citation