• Photonics Research
  • Vol. 10, Issue 11, 2590 (2022)
Sijie Zhu1、†, Zhoujie Wu1、†, Jing Zhang2, Qican Zhang1, and Yajun Wang1、*
Author Affiliations
  • 1College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
  • 2State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • show less
    DOI: 10.1364/PRJ.468658 Cite this Article Set citation alerts
    Sijie Zhu, Zhoujie Wu, Jing Zhang, Qican Zhang, Yajun Wang. Superfast and large-depth-range sinusoidal fringe generation for multi-dimensional information sensing[J]. Photonics Research, 2022, 10(11): 2590 Copy Citation Text show less
    References

    [1] M. Riesenhuber, T. Poggio. Models of object recognition. Nat. Neurosci., 3, 1199-1204(2000).

    [2] R. Zhong, X. Xu, E. Klotz, S. Newman. Intelligent manufacturing in the context of industry 4.0: a review. Engineering, 3, 616-630(2017).

    [3] K. Genovese. An omnidirectional DIC system for dynamic strain measurement on soft biological tissues and organs. Opt. Laser Eng., 116, 6-18(2019).

    [4] Z. Zhang, X. Ma, J. Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun., 6, 6225(2015).

    [5] Z. Zhang, S. Liu, J. Peng, M. Yao, G. Zheng, J. Zhong. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements. Optica, 5, 315-319(2018).

    [6] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 102, 13081-13086(2005).

    [7] Y. Zhao, B. Song, M. Wang, Y. Zhao, Y. Fan. Halftone spatial frequency domain imaging enables kilohertz high-speed label-free non-contact quantitative mapping of optical properties for strongly turbid media. Light Sci. Appl., 10, 245(2021).

    [8] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photon., 3, 128-160(2011).

    [9] M. P. Edgar, G. M. Gibson, M. J. Padgett. Principles and prospects for single-pixel imaging. Nat. Photonics, 13, 13-20(2019).

    [10] S. Lei, S. Zhang. Flexible 3-D shape measurement using projector defocusing. Opt. Lett., 34, 3080-3082(2009).

    [11] H. Fujita, K. Yamatan, M. Yamamoto, Y. Otani, A. Suguro, S. Morokawa, T. Yoshizawa. Three-dimensional profilometry using liquid crystal grating. Proc. SPIE, 5058, 51-60(2003).

    [12] C. Zuo, Q. Chen, S. Feng, F. Feng, G. Gu, X. Sui. Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing. Appl. Opt., 51, 4477-4490(2012).

    [13] G. A. Ayubi, J. A. Ayubi, J. M. Di Martino, J. A. Ferrari. Pulse-width modulation in defocused three-dimensional fringe projection. Opt. Lett., 35, 3682-3684(2010).

    [14] Y. Wang, S. Zhang. Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing. Opt. Lett., 35, 4121-4123(2010).

    [15] T. Xian, X. Su. Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry. Appl. Opt., 40, 1201-1206(2001).

    [16] W. Lohry, S. Zhang. 3D shape measurement with 2D area modulated binary patterns. Opt. Laser Eng., 50, 917-921(2012).

    [17] Y. Wang, S. Zhang. Three-dimensional shape measurement with binary dithered patterns. Appl. Opt., 51, 6631-6636(2012).

    [18] W. Lohry, S. Zhang. Genetic method to optimize binary dithering technique for high-quality fringe generation. Opt. Lett., 38, 540-542(2013).

    [19] Y. Li, J. Shen, Z. Wu, Q. Zhang. Passive binary defocusing for large depth 3D measurement based on deep learning. Appl. Opt., 60, 7243-7253(2021).

    [20] A. Kamagara, X. Wang, S. Li. Optimal defocus selection based on normed Fourier transform for digital fringe pattern profilometry. Appl. Opt., 56, 8014-8022(2017).

    [21] Y. Wang, H. Zhao, H. Jiang, X. Li. Defocusing parameter selection strategies based on PSF measurement for square-binary defocusing fringe projection profilometry. Opt. Express, 26, 20351-20367(2018).

    [22] C. Jiang, P. Kilcullen, Y. Lai, T. Ozaki, J. Liang. High-speed dual-view band-limited illumination profilometry using temporally interlaced acquisition. Photon. Res., 8, 1808-1817(2020).

    [23] Z. Zhang, X. Wang, G. Zheng, J. Zhong. Fast Fourier single-pixel imaging via binary illumination. Sci. Rep., 7, 12029(2017).

    [24] J. Huang, D. Shi, K. Yuan, S. Hu, Y. Wang. Computational-weighted Fourier single-pixel imaging via binary illumination. Opt. Express, 26, 16547-16559(2018).

    [25] C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, Q. Chen. Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Opt. Lasers Eng., 102, 70-91(2018).

    [26] Y. Wang, J. Laughner, I. Efimov, S. Zhang. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique. Opt. Express, 21, 5822-5832(2013).

    [27] Z. Wu, W. Guo, Y. Li, Y. Liu, Q. Zhang. High-speed and high-efficiency three-dimensional shape measurement based on Gray-coded light. Photon. Res., 8, 819-829(2020).

    [28] Y. Xiao, Y. Cao, Y. Wu. Improved algorithm for phase-to-height mapping in phase measuring profilometry. Appl. Opt., 51, 1149-1155(2012).

    [29] Y. Wang, J. Zhang, B. Luo. High dynamic range 3D measurement based on spectral modulation and hyperspectral imaging. Opt. Express, 26, 34442-34450(2018).

    [30] Z. Wu, W. Guo, B. Pan, Q. Kemao, Q. Zhang. A DIC-assisted fringe projection profilometry for high-speed 3D shape, displacement and deformation measurement of textured surfaces. Opt. Lasers Eng., 142, 106614(2021).

    [31] B. Pan, H. Xie, Z. Guo, T. Hua. Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt. Eng., 46, 033601(2007).

    Sijie Zhu, Zhoujie Wu, Jing Zhang, Qican Zhang, Yajun Wang. Superfast and large-depth-range sinusoidal fringe generation for multi-dimensional information sensing[J]. Photonics Research, 2022, 10(11): 2590
    Download Citation